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Abstract

Healthcare conversational AI agents shouldn’t be optimized only for clean benchmark accuracy
in production-first regime; they must be optimized for the lived reality of patient conversations,
where audio is imperfect, intent is indirect, language shifts mid-call, and compliance hinges on
how guidance is delivered. We present a production-validated framework grounded in real-time
signals from 115M+ live patient–AI interactions and clinician-led testing (7K+ licensed clinicians;
500K+ test calls). These in-the-wild cues – paralinguistics, turn-taking dynamics, clarification
triggers, escalation markers, multilingual continuity, and workflow confirmations – reveal failure
modes that curated data misses and provide actionable training and evaluation signals for safety
and reliability.

We further show why healthcare-grade safety cannot rely on a single LLM: long-horizon
dialogue and limited attention demand redundancy via governed orchestration, independent
checks, and verification. Many apparent “reasoning” errors originate upstream, motivating
vertical integration across contextual ASR, clarification/repair, ambient speech handling, and
latency-aware model/hardware choices. Treating interaction intelligence (tone, pacing, empathy,
clarification, turn-taking) as first-class safety variables, we drive measurable gains in safety,
documentation, task completion, and equity in building the safest generative AI solution for
autonomous patient-facing care. Deployed across more than 10 million real patient calls, Polaris
attains a clinical safety score of 99.9%, while significantly improving patient experience with
average patient rating of 8.95 and reducing ASR errors by 50% over enterprise ASR. These
results establish real-world interaction intelligence as a critical – and previously underexplored –
determinant of safety and reliability in patient-facing clinical AI systems.
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1 Introduction: Real-World Challenges Beyond Static Benchmarks
Static medical QA benchmarks such as MedQA (USMLE), MedMCQA, PubMedQA, MultiMedQA,
and MMLU-clinical subsets [9, 10, 11, 12, 13] have pushed the field forward by making evaluation
scalable and comparable. But this progress has also created a blind spot: the community increasingly
optimizes for clean tasks on clean data, then assumes those gains will translate to safe patient-facing
conversations. In practice, a live patient call is not a benchmark question. It is speech, not text; it
is noisy, not curated; it is emotionally and socially situated; and it is tightly coupled to downstream
actions – scheduling, monitoring, documentation, benefits, escalation, and follow-up. The gap is not
subtle. If we want autonomous patient–AI interactions to be safe and reliable, we must learn from
the conditions we actually deploy in, not extrapolate from offline leaderboards.

At clinical scale, production conversations exhibit failure modes and opportunity signals that
rarely appear in curated datasets. They include acoustic and paralinguistic cues (hesitation, breath,
distress markers), turn-taking dynamics and micro-timing, ambiguity and indirect answers, and
multilingual continuity with mid-call switching. They also include both system-level and multi-turn
feedback that static datasets do not provide: whether an appointment was actually booked given
API confirmation, whether a benefits quote can be verified from the source, whether an HRA (Health
Risk Assessment) form requires further clarification from the user for reconciliation, and whether
escalation was appropriate given the interaction trajectory. These signals are messy—but they’re
also information-rich. A production-first approach leverages these signals to capture governed
telemetry, surface where systems fail, and convert those patterns into concrete architectural and
alignment solutions.

This paper argues for four design principles that follow directly from what live patient calls
demand.

First, real-world signals matter as much as clean accuracy. A benchmark mindset
rewards single-shot correctness on pristine inputs. Live calls require robustness to speech variability
and real-time interaction, and they reward repair: knowing when to ask a targeted clarification,
how to confirm critical entities, and how to keep the conversation moving without overconfident
assumptions. The goal shifts from “correct answer” to “safe completion”: the patient understood,
the workflow succeeded, and uncertainty was handled transparently.

Second, healthcare-grade safety cannot come from a single LLM. Traditional safety
engineering relies on redundancy because complex systems fail in multiple ways. LLMs add a
special twist: long-horizon dialogue strains attention and increases the chance of drift, omissions,
and misplaced confidence as context grows. A single monolithic model – no matter how capable –
becomes a single point of failure. We therefore treat safety as a system property, achieved through
independent checks, verification, and governed orchestration across components that can catch each
other’s misses.

Third, many “reasoning errors” are really input errors. In voice-first care, upstream
uncertainty is often the root cause: a misheard medication, a swapped digit in a vital sign,
background speech mistaken for the patient, or a clipped utterance that changes meaning. If we
only improve downstream reasoning, we may simply become more fluent at rationalizing incorrect
inputs. Achieving reliable behavior requires vertical integration into the speech stack – contextual
ASR, robust short-utterance handling, clarification/repair mechanisms, and ambient speech control
– so the model reasons over faithful representations of what the patient actually said.

Fourth, how you deliver care changes outcomes. In domains like coding, math, or paper
writing, tone and pacing rarely affect task correctness. In healthcare, delivery affects disclosure, trust,
and compliance. The same instruction can either motivate follow-through or trigger disengagement
depending on empathy, turn-taking, and pacing. We therefore elevate interaction micro-skills – tone
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calibration, trajectory control, clarification behavior, and conversational timing – from “nice-to-have
UX” to first-class safety variables.

Table 1: Production-grade clinical intelligence from real-world conversational signals. Evaluations
on live patient interactions and simulated conversations with clinicians show that Polaris 4 reduces
clinically relevant errors while improving interaction quality, longitudinal continuity, and respon-
siveness. The results illustrate the paper’s central claim: production-grade clinical intelligence is
achieved by learning from real-world interaction signals and embedding them into system-level
design, not by optimizing isolated model accuracy alone.

Evaluation Dimensions GPT4o Hippocratic AI
(Main Model only)

Hippocratic AI
(Polaris 4 Constellation)

Evaluating Error Rate (↓) on Human–AI Real Conversations

Clinical
Labs & Vitals 18.0% 1.5% 0.01%
Medications 10.9% 3.1% 0.01%
Human Escalation 15.0% 7.4% 0.1%

Speech
Medical Recognition
(Clinical ASR) 12.8% 7.3% 7.3%

Clarification &
Recovery 24.6% 7.8% 2.0%

Scheduling Appointment Booking 23.1% 13.7% 0.1%

Documentation Form Fill 64.6% 15.0% 0.6%

Interactive Voice Response IVR Navigation 49.7% 18.0% 18.0%

Evaluating Win Rate (↑) on Simulated Conversations

HEART
(Emotional Support
Dialogue Benchmark)

Conversation Naturalness 40.9% 79.1%

Main model only evaluation

Empathetic Intelligence 41.1% 78.7%
Emotional De-escalation 50.7% 77.2%
Likeability & Engagement 46.0% 85.9%
Instruction & Task-
following 63.9% 71.3%

Multi-call Memory Longitudinal Contextualization 52.0% 92.0%

Main Model Latency Time-to-first-token (TTFT) 500ms 400ms –

Key result. Table 1 aggregates results from multiple evaluation regimes, each matched to the
subsystem being measured: retrospective audits of live patient calls for clinical error rates, clinician-
validated simulations for interaction quality, and on-policy production measurements for latency
and workflow execution. Not all dimensions apply to all model configurations; in particular, Polaris
4 Constellation metrics reflect system-level orchestration beyond a single conversational model.
Clinical evaluation protocols are detailed in Section 9 with description of the sub-tasks for labs,
vitals and medications outlined in the first Polaris technical report [25]. Speech and orchestration
evaluation outlined in Section 4 and Section 6, respectively. Conversational intelligence and empathy
evaluation is based on the HEART benchmark [21] discussed in Section 3.2.1. Multi-call memory
for longitudinal personalized interactions and latency optimization discussed in Section 3.4 and
Section 5, respectively. We consider GPT4o as the baseline. GPT-4o (and the GPT-4o realtime
variants / family) has been one of the most widely adopted default choices for voice agents, especially
across popular voice-agent platforms (e.g., VAPI) and Realtime API integrations.

Outline. The remainder of the paper shows how these principles translate into a deployable
framework. Section 2 introduces the Polaris safety constellation, where a core conversation model is
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assisted by specialist models and verifiers, coordinated through governed orchestration rather than
a single-LLM decision path. Section 3 details interaction intelligence: trajectory-aware tone and
pacing, empathy-driven dialog control, turn-taking and latency budgeting, and continuity across calls
– framed specifically as safety-relevant behavior in patient communication. Section 4 moves upstream
to speech understanding for the real world, including contextual ASR and targeted clarification
that reduce clinically meaningful input errors before they become downstream failures. Section 5
describes the performance and serving constraints that make real-time voice AI possible (and why
latency is itself a safety constraint). Section 6 covers workflow-grounded verification for scheduling,
policy quoting/RAG, and documentation reconciliation, emphasizing post-condition checks against
sources of truth. Section 7 addresses multilingual continuity and equity, including mid-call switching
and dialectal variability. Sections 8, 9 and 10 then describe how these components are governed for
clinical safety, evaluated at scale using an RWE-LLM approach, and validated through operational
and clinical impact in deployment. We discuss related work in Section 11 on traditional static and
offline evaluation for clinical AI frameworks.

2 System Overview: The Polaris Safety Constellation
Polaris employs a constellation of specialized LLMs and signal-processing engines surrounding a
core conversation model (see our Polaris constellation architecture1).

2.1 Core and Specialists

The constellation comprises of:

• A core model that handles dialogue and policy-constrained reasoning.

• Over thirty supervisor models specialized for providing context and reasoning across tasks like
medication identification and stoppage, overdose, condition-specific disallowed OTC’s, identity
verification and compliance, labs and vitals, escalation decisioners that gate high-risk cases,
etc.

• Online and offline verifiers that check retrieval and reasoning chains for tasks like structure
documentation (HRAs, follow-ups, policy and benefits). Specialists run in two regimes:
synchronous steerable guidance and asynchronous “deep thinking" interleaving that pause-
and-verify before sensitive actions.

2.2 Governed Orchestration

A tool-call layer executes actions (e.g., schedule appointments, transfer calls, send SMS) with
governance: preconditions, input validation, and post-conditions (state checks). For instance, a
scheduling online checker can query the scheduler to confirm bookings and repair mismatches
in-call, while an offline reconciliation model aligns documents with full-call conversational context
as opposed to the online one that has access to only partial transcript.

1https://hippocraticai.com/research/
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3 Interaction Intelligence

3.1 Tone Adaptation and Trajectory Control

Polaris learns trajectory-aware dialog control: adjusting depth and pace to the patient’s signals
(reassurance vs. urgency) and employing assertiveness appropriately. EQ features – such as reading
between the lines, picking up on unspoken concerns, and supporting patients who struggle to finish
a thought – improve rapport and make the interaction feel smoother and more attuned [5, 6, 7].

In addition to pacing and depth, Polaris continuously adjusts its tone to reflect where the patient
is emotionally within the interaction. It softens its language when a patient sounds overwhelmed,
becomes more direct when clarity is needed, and maintains steady warmth during sensitive disclosures.
These shifts are subtle and unfold over the course of the dialog, helping the patient feel understood
without drawing attention to the adaptation itself. By aligning tone with trajectory in this way,
Polaris supports smoother conversations, reduces friction during stressful moments, and strengthens
the feeling of being guided rather than instructed.

3.2 Dynamic Conversations, Powered by Empathy

Polaris tunes for trajectory-aware dialog, adapting depth, tone, and assertiveness to patient needs.
Emotional skills – empathy, reading between the lines, infinite patience, and non-judgmental
rapport—build trust, while motivational interviewing promotes adherence. Voice enhancements
from professional actors deliver warmth and clarity. These align with empathetic-intelligence
principles, increasing comfort in confiding and extended engagement during calls.

Beyond these emotional capabilities, Polaris dynamically adjusts its conversational style to
match the patient’s evolving affect and communication patterns. The model blends contextual cues
– urgency, hesitations, distress markers, verbosity, background noises, and lexical uncertainty – to
determine whether to lean into a faster, more directive mode or a slower, warmer, more reflective
stance. Style adaptations include adopting a concise clinical tone for medication, dose clarification,
or insurance details; shifting into a gentler cadence during emotional overwhelm; or maintaining
urgency when the patient signals time pressure or confusion. It also modulates turn length and
reasoning depth to respect cognitive load, speech difficulty, or fatigue.

When suitable, Polaris introduces light humor – never distracting, always calibrated – to ease
tension, restore comfort, or simply keep the interaction human and warm. For patients who express
themselves through longer narratives, Polaris maintains a calm, unhurried presence: listening fully,
allowing space, mirroring emotions, and responding with steady patience while gently steering the
dialogue toward what will help them most. These shifts occur fluidly across turns, preventing the
drift or personality collapse seen in single-prompt systems and ensuring the agent remains coherent,
stable, and aligned with the patient’s communicative needs.

Patient preferences expressed during the conversation – such as a desire for brevity, detailed
explanations, more encouragement, or a casual tone – are integrated dynamically into the dialog
trajectory. The system continually revises its stance based on new signals, supporting real-time
attunement without compromising safety or clinical grounding. Polaris also balances task progression
with emotional pacing, avoiding premature reassurance and ensuring the patient feels heard before
transitioning to next steps or instructions.

Together, these adaptive behavioral adjustments make interactions feel natural, personalized,
and emotionally calibrated. By continuously matching its style to the patient’s psychological and
practical needs, Polaris meets patients where they are, sustains rapport across multi-turn settings,
and strengthens trust throughout the entire call.
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3.2.1 Benchmarking Interaction Intelligence

To evaluate Polaris’s interaction intelligence, we benchmark it on HEART [21] – a recent framework
designed specifically to measure supportive, emotionally attuned behavior in multi-turn dialogue.
Unlike factual QA or reasoning benchmarks, HEART focuses on the interpersonal dimension of
conversation: whether a model responds like a thoughtful, attentive human supporter who listens,
calibrates tone, and helps the seeker move forward. HEART evaluates responses along five dimensions
grounded in communication science: Human Alignment (natural tone and phrasing), Empathic
Responsiveness (affective acknowledgement), Attunement (tracking the seeker’s specific details
and emotional signals), Resonance (forward momentum and relevance), and Task-following
(respect for safety and role boundaries). These axes jointly capture the micro-skills that shape
high-quality emotional support and offer a structured way to measure the kinds of conversational
behaviors Polaris is designed to portray.

HEART provides a natural testing ground for Polaris because many of its architectural and
alignment choices explicitly target the abilities HEART measures. Polaris’s trajectory-aware control
allows the model to shift pacing, framing, and emotional depth across turns, mirroring how human
supporters adjust as the conversation unfolds. Its tone-adaptive mechanisms – softening during
overwhelm, becoming more direct when clarity is needed, and maintaining warmth during sensitive
disclosures – support both Empathic Responsiveness and Human Alignment. Similarly, Po-
laris’s clarifying-question heuristics and reflective summarization behaviors strengthen Attunement
by grounding the response in the seeker’s specific concerns rather than generic reassurance. HEART’s
multi-dimensional scoring captures these competencies in a way that single-turn or sentiment-focused
benchmarks cannot, making it well-suited for evaluating interaction-sensitive systems like Polaris.

On HEART, Polaris outperforms other models under ideal latency targets for real-time voice
conversations as shown in Figure 1. Polaris also outperforms models with substantially higher latency
and larger effective capacities with test-time compute. Polaris’s strongest axes are Attunement and
Empathic Responsiveness, reflecting its design emphasis on reading-between-the-lines, emotional
calibration, and trajectory-aware adaptation. These scores highlight that Polaris’s alignment toward
conversational micro-skills produces tangible improvements in how human judges experience its
supportive responses.

A distinctive aspect of Polaris’s evaluation is its latency profile. HEART is text-based, but
supportive dialogue is highly sensitive to timing, especially in voice-first contexts. As shown in
Figure 1, frontier models that achieve the top HEART Elo scores – GPT-o3, Gemini 2.5 Pro,
Claude 4.5 Sonnet – typically operate at multi-second time-to-first-answer-token (TTFT) values
between 2 s and 22 s. Polaris 4 occupies a different part of the quality–latency space. It delivers
near-frontier supportive-dialogue performance while maintaining a median TTFT of approximately
400 ms, more than an order of magnitude faster than the slowest frontier models. This speed enables
naturalistic turn-taking in synchronous voice interactions, preserving the micro-timing cues essential
for perceived empathy, conversational flow, and user comfort. Polaris is one of the only models in
the high–Elo region operating at less than 500ms TTFT (ideal for real-time voice conversations),
alongside Claude 3.7 Sonnet, and significantly faster than larger frontier models such as GPT-o3
and Gemini 2.5 Pro.

Together, these results show that Polaris not only performs strongly on HEART but does so while
meeting the responsiveness requirements of real-time interaction. The benchmark highlights several
of Polaris’s strengths – consistent emotional validation, accurate tracking of conversational details,
calibrated next-step guidance – and reveals how domain-specific alignment can achieve human-
preferred supportive behavior. HEART thus provides evidence that the interaction-intelligence
capabilities engineered into Polaris 4 translate into measurable gains on a rigorous, human-centered
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Figure 1: Latency–HEART Elo landscape across models. HEART is a benchmark [21]
that evaluates supportive-dialogue quality across five dimensions (human-alignment, empathic
responsiveness, attunement, resonance, and task-following). As the plot shows, most models
achieving high HEART Elo cluster in the multi-second time-to-first-token (TTFT) region, where
response delays are too slow for natural turn-taking. Polaris 4 is a clear outlier: it matches the
supportive-dialogue quality of much larger frontier systems while maintaining less than 500ms TTFT
(ideal for real-time voice conversations), occupying a sparsely populated region of the latency–Elo
space where both high empathy and real-time responsiveness are simultaneously achievable.

9



evaluation of supportive dialogue. [24, 2, 6, 7, 5]

3.3 Turn-Taking and Latency Budgeting

In real-time voice agents, turn-taking quality is strongly influenced by how quickly the system
responds after the user completes an utterance. Human conversation typically features very short
gaps between turns – often on the order of a couple hundred milliseconds – across languages, and
timing is considered a core constraint on language processing in dialogue. When systems routinely
exceed that rhythm, users perceive them as sluggish, interrupt them more, or disengage [16, 17, 18].

Voice conversations present a unique challenge from lags resulting from transmission, endpointing
(EP) and voice activity detection (VAD) particularly difficult in presence of background noise and
speech, automatic speech recognition (ASR) and transcription, intermediate language model (LLM)
processing and finally the speech generation (TTS). This is why the usual LLM “time-to-first-chunk"
is not as useful as the “time-to-first-audio" (TTFA) that matters the most. For voice, perceived
responsiveness is best approximated by:

TTFA = endpointing/VAD + ASR finalization + LLM time-to-first-chunk (TTFT)+
TTS time-to-first-audio + playout/jitter

Users don’t care when the first token appears; they care when the agent starts speaking – and
whether the gap feels like a normal conversational pause [16, 17]. Overall, it’s a budgeting problem.
We pick an end-to-end responsiveness target that aligns with conversational expectations, then
allocate that budget across endpointing/VAD, ASR, LLM, and TTS, and tool-calls, optimizing
the modal tail (P95–P99) via our optimized contextual ASR, KV cache optimization, cache-aware
routing, workload specific optimization based on use-case and long-context conversation (Section 5).

3.3.1 Target Latency for Real-time Voice Conversations

We treat a median LLM time-to-first-token (TTFT) of roughly 500ms as a practical design target
for real-time voice interaction. Conversation analysis shows that human turn-taking involves
extremely short sub-second gap between one speaker finishing and the next beginning [19, 16, 17].
Human–computer interaction research similarly finds that delays below 1s feel fluid, whereas longer
pauses begin to feel disruptive [20]. Together, these strands motivate a sub-second latency budget if
we want voice AI agents to feel conversational rather than transactional.

In deployed systems, however, LLM latency is only one contributor to time-to-first-audio (TTFA).
Endpointing and ASR typically consume 150–300ms, and TTS require another 100–200ms before
producing the first audio frame. To keep overall TTFA below ∼1s under median conditions, the
LLM itself must therefore operate within a few hundred milliseconds. A median TTFT of 500ms is
thus a reasonable operating point for an LLM for real-time voice AI.

3.4 Personalized Longitudinal Interactions and Continuity

Building on the Patient Continuum framework [15], Polaris introduces a multi-call memory ar-
chitecture that persistently carries non-EHR contextual information across encounters, enabling
more personalized longitudinal interactions without compromising patient privacy. These memories
are modular and self-contained pieces of patient-specific information. For example, motivational
drivers or long-term goals, designed to improve patient engagement and ultimately support better
health outcomes. To ensure privacy and regulatory compliance, all memories are extracted and
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Table 2: Multi call memory contextualization benchmark results.
Task gpt4o Best Open Model o1 Polaris 4
Contextualization quality 52% 57% 64% 92%

curated using an LLM, and then stored in a HIPAA-compliant database, where they are dynamically
retrieved at inference time to inform each new call. When used appropriately, memories significantly
improve patient–AI engagement and conversational naturalness.

To maintain safety and trustworthiness, Polaris employs extensive filtering mechanisms to avoid
controversial, sensitive, or clinically inappropriate memory content, ensuring that only relevant
and clinically constructive information persists across interactions. Furthermore, because effective
use of memories depends not only on retrieval, but also on the conversational model’s ability to
integrate them appropriately, the conversational model is explicitly aligned to reason about when
and how retrieved memories should shape their responses. We created an LLM-as-a-judge-based
evaluation benchmark using simulated conversations, to measure the model’s ability to appropriately
contextualize prior memories in an appropriate and effective way for each patient. Table 2 shows
the results of different models on the multi-call memory contextualization benchmark.

The contrast below illustrates the impact of alignment when using a memory such as “the
patient’s primary motivation is to live long enough to see his daughter walk down the aisle in a few
years.”

Unaligned LLM: Agent: “Michael, I understand you don’t like using your blood
pressure cuff. However, I want to remind you that you told me your goal is surviving to
attend your daughter’s wedding in a few years. I think to meet that goal, it’s essential
to routinely monitor your blood pressure.”

Patient Continuum–aligned LLM: Agent: “I get it, and I know you’re in a tough
spot Michael. On one hand, the blood pressure cuff is annoying, but on the other hand,
you want to improve your health – you have so much to look forward to, and you want
to be there for your family! How do you think about this tradeoff?"

Note the subtlety in conveying the same intent but in different tones that makes the LLM
appear pushy in the first instance and motivational in the second. The aligned model uses the
memory gently and empathetically, supporting motivation while preserving the patient’s sense
of agency. Together, the memory infrastructure and alignment strategy enable Polaris to deliver
longitudinally consistent, personable, and clinically grounded conversations while maintaining strict
privacy standards.

4 Speech Understanding for the Real World
In Polaris, we developed a novel contextual ASR architecture to incorporate multi-turn context
to handle short utterances, ambiguities, medical context and noise, with modular engines for
background speech isolation, slurred speech understanding, and language switching. Trained on
curated medical corpora and synthetic noisy data, it achieves 2× lower word error rate (WER) on
clinical tasks while improving on baseline WER compared to SOTA open and closed source models.
Features like handling background family discussions or forgetful patients (MCI support) ensure
robust performance across diverse environments [24, 2, 3].
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4.1 Contextual ASR Architecture

We implement a multi-turn contextual ASR. This extends standard speech recognition by conditioning
the decoding on multi-turn dialogue context. Our system is built on a decoder-only audio large
language model (audio-LLM) that integrates acoustic representations, textual history, and domain-
specific corpora into a single generative framework. This unified design allows the model to resolve
ellipsis and references across turns, handle rare domain terminology, and follow task-specific prompts,
all while maintaining robustness under noise, accent variability, and spontaneous conversational
speech.

At a high level, input audio is encoded by the fine-tuned encoder of Whisper-large-v3-turbo [33],
whose multilingual pretraining provides strong general-purpose speech features. These frame-level
states are passed through a Conformer-based projector that performs depthwise-only temporal
merging, compressing adjacent frames per channel while retaining prosodic cues such as pauses and
stress patterns. Self-attention layers provide cross-channel mixing, producing a compact token-like
sequence aligned to the LLM embedding space. This enables the decoder to process long utterances
efficiently without discarding fine-grained phonetic information.

To incorporate conversational context, we encode recent dialog turns and relevant information
and prepend them as prefix tokens during decoding. The unified decoder then jointly attends to
context and projected audio, allowing it to maintain entity consistency, disambiguate pronouns,
and adapt to user-specific phrasing. Domain fidelity is further strengthened by integrating domain-
specific datasets – such as medication lists, clinical forms, and policy snippets – into the training
mixture. These corpora expose the model to rare drug names, structured numeric expressions, and
other domain-relevant patterns, improving recognition without relying on additional architectural
components. Finally, user specific contextual biasing is further taught to the model via synthetic
data augmentation using simulated user profiles with personal biasing, such as date of birth, know
medication names for patient, addresses, etc. Jointly training with personal biasing context and
conversational context allows the model to learn to map the relationship between conversational
and personal biasing information: therefore significantly improving performance on real world
use-cases of understanding DOB, addresses and proper nouns, often mistranscribed by traditional
ASR systems.

Actual Address: 1100 Geary Blvd at Geary Blvd & van Ness Ave intersection.

Transcription Without Personalized User Context:
Agent: “Could you please confirm your address?”
User: “Yeah its at the intersection of Gear Boulevard & Vans Ave at 1100 Gear
Boulevard.”

Transcription With Personalized User Context:
UserContext: {name: "User Name"; dob: 01/01/1970; address: "1100 Geary Blvd at
Geary Blvd & van Ness Ave intersection."}
Agent: “Could you please confirm your address?”
User: “Yeah its at the intersection of Geary Blvd & van Ness Ave at 1100 Geary Blvd“

Training follows a two-stage curriculum. First, an alignment stage trains only the projector to
match token-affinity distributions between projected audio and ground-truth text, improving the
cross-modal mapping prior to end-to-end optimization. Second, the full audio-LLM is fine-tuned
with an autoregressive ASR objective, using LoRA on the LLM and updating only the upper
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layers of the audio encoder for compute efficiency and stability. Noise augmentation (clinic, transit,
TV backgrounds) and SpecAugment [34] improve robustness, while a staged curriculum gradually
increases contextual complexity and domain exposure, leading to stable learning for multi-turn
scenarios.

4.2 Robust Short Audio Transcription

We introduce Single Word Correction (SWC) to mitigate a common failure mode in clinical ASR:
utterances that produce a one-token transcript. These cases are frequent in patient interactions
because many responses are brief affirmations, negations, or short values (e.g., “okay”, “yes”, “no”,
“sure”, numerals), and are disproportionately prone to phonetic confusions such as “no” vs. “now”
or “five” vs. “fine”. When the primary ASR outputs a single word, SWC triggers a secondary
verification step that expands the hypothesis set to a small confusion list of phonetically similar
candidates. A separate model, conditioned on the broader conversational and call context, then
re-scores these candidates to select the most contextually consistent interpretation, acting as an
additional guard against mis-transcription while adding only 100 milliseconds to the ASR latency
for single words. Across the evaluated corpus, SWC reduced single-word transcription errors from
2.4% to 0.2% (Table 5), yielding a substantial improvement in reliability for short patient replies
that often convey critical clinical information.

4.3 Targeted Clarification and Recovery

To further improve robustness in real-world calls, we implement Targeted Clarification [2], a fallback
mechanism for residual ASR errors, incomplete patient responses, or out-of-context inputs caused
by background speech and overlapping talk. When the system detects uncertainty — e.g., low ASR
confidence, conflicting or implausible entities given domain priors (medications, dosages, names,
identifiers), or semantic mismatch with the recent dialogue state — an uncertainty-aware clarifier
is triggered. Rather than issuing generic “please repeat” prompts, the clarifier generates minimal,
high-yield follow-ups that target the most likely confounder (for example, confirming a medication
name versus dose, or disambiguating identifiers). This design keeps the conversation natural while
ensuring that clinically salient information is confirmed before downstream actions, effectively
completing the guardrail stack after SWC.

4.4 Empathetic Voice

For Polaris, we redesigned the voice experience using a hybrid human–AI pipeline. We first collected
a studio-quality corpus from a professional voice actor, covering clinically relevant interaction types
that our agents commonly handle (e.g., pre-procedure reassurance, recovery acknowledgment, and
step-by-step explanations of complex medical information). The recordings were structured to
elicit consistent prosody, affective range, and context-appropriate speaking styles under controlled
conditions.

We then applied voice conversion and normalization methods to reduce variability between
sessions and to align timbre, prosodic patterns, and speaking rate with a target synthetic voice
profile. The resulting voice model is calibrated to maintain stable acoustic characteristics while
retaining human-like expressiveness, yielding a digital voice that prioritizes warmth, clarity, and
affect-aware delivery appropriate for healthcare conversations. This process was tested and calibrated
for English and later replicated in other languages like Spanish and Arabic. Even for a target
language e.g., Arabic the voice was tuned for different dialects like Hejazi, Khaleeji (sub- Emirati),
Modern Standard Arabic, etc.
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Audio-based evaluations, specifically involving voice, are quite subtle and nuanced compared to
text-based evaluations. We first use a synthetic evaluation using Gemini 2.5 Pro as the judge, based
on prior work [31], using multi-attribute rubrics like empathetic tone, naturalness, warmth, clarity,
engagement, overall effectiveness, etc. Across multiple evaluations, the new voice was selected
as better in two-thirds of trials, representing an estimated 30 percentage-point improvement in
preference over the production baseline. Most of the wins were concentrated in utterances that
demanded high emotional variability. We additionally conducted a human preference study on a
sampled set of audio pairs to validate the LLM-based evaluation. Human raters showed strong
agreement, with high inter-rater reliability (IRR), indicating that the preference for the new voice is
robust to evaluator choice and not an artifact of the automated rubric scoring.

4.5 ASR Performance Summary

Tables 3 and 4 show word error rate (WER) on internal evaluation datasets and Open ASR
evaluation benchmark. Table 5 reports component-level error rates from real-world calls. Together,
they indicate substantial quality gains and markedly better tail latency.

WER. On internal evaluations against state-of-the-art enterprise ASR, Polaris lowers WER
from 6.47 to 5.92 on general domain data (absolute −0.55, ∼8.5% relative) and more than halves
WER on medical domain data from 15.69 to 7.76 (absolute −7.93, ∼50.5% relative). The larger
domain-specific gain is consistent with our training that incorporates targeted corpora. On the Open
ASR benchmark, Polaris is competitive across diverse conditions: it leads on SPGISpeech (1.76,
best among the listed models), is close on LibriSpeech-Clean (1.55; +0.12 to the best). Overall,
results suggest that our method’s strengths on domain-critical terminology and clean/read speech
carry over to several public domain datasets.

Table 3: ASR Word Error Rate (WER; lower the better) on internal general and medical domain
datasets.

Model General Medical
SOTA Enterprise ASR 6.47 15.69
Polaris Contextual ASR 5.92 7.76

Table 4: ASR Word Error Rate (WER; lower the better) on the Open ASR benchmark (https:
//huggingface.co/spaces/hf-audio/open_asr_leaderboard)

.
Model AMI GS LS Clean LS Other SPGI Tedlium Voxpopuli
canary-qwen-2.5b 10.19 9.43 1.61 3.1 1.9 2.71 5.66
granite-speech-3.3-8b 8.98 10.19 1.43 2.86 3.91 3.4 5.71
Polaris w/ Contextual ASR 12.36 9.97 1.55 3.27 1.76 3.38 5.91

Quality improvements by engine. Across all engines, Polaris w/ contextual ASR shows large
absolute and relative error reductions compared to prior systems. On average (macro over rows),
this corresponds to an 85% relative reduction in component error. In particular, the large drops for
Entity Transcription align with our domain-aware training – we incorporate domain corpora (drug
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dictionaries, forms, policy snippets) during training – along with curriculum staging and numeric
normalization heuristics.

Table 5: Error rates (lower the better) for real-world calls across different ASR systems used in
Polaris. [3]

Engine SOTA Enterprise ASR Contextual ASR
Background Noise Isolation 9.3% 2.3%
Speech Detector (primary speaker) 15.0% 2.4%
Single-Word Recognition 2.4% 0.2%
Entity Transcription (meds/numbers) 4.2% 0.5%
Clarification Engine (misunderstandings) 16.3% 2.0%

Latency: mean and tails. Polaris w/ contextual ASR reduces mean latency by ∼ 15.7%
compared to the SOTA enterprise ASR we used in the prior Polaris versions. The largest gains
are in the tail by as much as 3.1× latency reduction at P99. For completeness, we note that the
contextual ASR uses standard decoder KV caching and prefix caching to avoid recomputation as
discussed in the next section.

5 Performance That Powers Real-Time Care
In clinical phone conversations, latency is a safety constraint rather than merely a quality of service
metric. Interruptions and “dead air” can degrade patient trust and obscure critical diagnostic
signals. Polaris 4 achieves a 40% reduction in end-to-end latency at P99 compared to prior versions
(Polaris 2.0) [22]. This reduction is driven by three primary architectural optimizations:

• Model Distillation via Layer Pruning: We derive a 300B parameter generalist backbone
from a 405B teacher model using depth-pruning techniques, preserving clinical and reasoning
capabilities while significantly increasing token throughput.

• Memory-Optimized Hardware: The transition to H200 GPUs provides the High Bandwidth
Memory (HBM3e) necessary to support larger batch sizes and persistent KV caches for long-
context clinical sessions.

• Latency-Aware ASR: A custom ASR engine trained specifically for clinical telephony
achieves a 50% reduction in Word Error Rate (WER) while running 3.1× faster at P99
compared to enterprise ASR.

5.1 Distillation and Model Sizing

We employ a capability-preserving distillation technique to speedup the main conversation model for
real-time voice while maintaining the clinical abilities inspired by recent findings on the inefficiency
of deeper layers in Large Language Models [32].

Gromov et al .[32] show that in many large transformers, the upper layers contribute dispro-
portionately little to next-token prediction or in-context reasoning, and that the model’s effective
computation saturates well before the final blocks. Their work demonstrates that deeper layers
often become feature-redundant, exhibit vanishing influence on outputs, and can even degrade
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performance when retained. Motivated by these findings, we adopt a pruning-then-healing paradigm
rather than standard logit-matching distillation.

We identify and remove redundant high-level blocks from the Llama-3.1-405B teacher to construct
a 300B student, preserving the “useful compute frontier” while discarding layers that contribute
negligible marginal signal. We then apply a continued pre-training (healing) phase to re-align
internal manifolds and restore cross-layer coherence, mitigating representational collapse after
pruning. As shown in Table 6, this reduction yields a 30% improvement in request throughput and
a significant reduction in Time Per Output Token (TPOT) at P99 (from 266.51 ms to 117.69 ms),
which is critical for preventing voice latency drift.

Table 6: Throughput Comparison (Higher is Better): 300B Pruned Model vs. 405B Teacher.
The 300B student maintains high throughput with significantly lower tail latency (P99 TPOT).
Compared to external provider benchmarks, we have the fastest throughput for serving 405B models.

Metric 300B (Student) 405B (Teacher)
Request Throughput (req/s) 14.31 10.96
Input Token Throughput (tok/s) 2888.49 2211.29
Output Token Throughput (tok/s) 3050.76 2335.36

5.2 Cache-Aware Routing Architecture

Autoregressive decoding in multi-turn applications is typically bound by memory bandwidth. In
standard stateless load balancing (e.g., Round Robin), sequential requests from the same conversation
session (S) are distributed stochastically across the inference cluster. This forces the target node to
recompute Key-Value (KV) states for the entire history Ht−1 at every turn t, resulting in a prefill
latency that scales linearly with conversation depth: O(|Ht−1|).

5.2.1 Deterministic Routing and Cluster Health

To eliminate redundant computation, we implemented a deterministic routing layer utilizing the
Kong API Gateway. We employ consistent hashing on the session identifier (call_id) to enforce
“sticky routing,” ensuring that all sequential turns t within a session S are routed to the same
inference node (node(t) = node(0)). This locality is strictly maintained to maximize cache hit rates,
provided the cluster topology remains stable.

To ensure strict adherence to latency SLAs, we augment this routing logic with an active
health-check protocol running at 5-second intervals. This high-frequency probing allows the load
balancer to identify and preemptively remove degraded or unreachable nodes from the consistent
hash ring before request dispatch. By preventing requests from queuing on failed nodes, we eliminate
head-of-line blocking and timeout-induced latency spikes, ensuring that the P99 inference times are
maintained even during partial cluster outages.

5.2.2 KV Cache Persistence and Efficiency

This routing guarantee allows the inference engine to persist the KV cache in high-bandwidth GPU
memory (HBM3e on H200s). For any turn t > 0, the system bypasses the prefill phase for Ht−1,
computing attention scores only for the new user utterance and system/tool outputs.

As detailed in Table 7, this shifts the computational profile from a compute-bound prefill (Turn
0) to a memory-bound decode (Turn 1+). In the steady state, the Mean Cache Hit Rate (CHR)
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converges to 96.4%, resulting in an 18x reduction in estimated prefill latency (∼450ms → ∼25ms).
Critically, this decouples system responsiveness from context length, preventing the “slowdown”
artifact common in long-context workflows.

Table 7: Prefix Cache Efficiency Metrics: Cold Start vs. Steady State. By leveraging consistent
hashing, the system achieves a 24x context reuse factor, effectively amortizing the cost of the initial
prefill across the entire session.
Metric Cold Start (Turn 0) Steady State (Avg) Delta
Mean Cache Hit Rate (CHR) 0.0% 96.4% +96.4 pts
Avg. Re-computed Tokens (Miss) 2,450 128 -94.8%
Effective Context Reuse 1.0x 24.5x 24x
Est. Prefill Latency ∼450 ms ∼25 ms 18x Faster
KV-Cache Memory Eviction Rate 100% < 1.5% Stable

5.3 Workload Analysis Across Clinical Domains

To validate the robustness of our cache-aware routing, we analyzed token distribution across five
distinct production workflows, representing a diverse range of clinical complexity. As illustrated in
Table 8, these workloads impose different stress tests on the inference infrastructure:

• Inbound Scheduling (High-Context RAG): Workflows such as the PCP Office Hotline
require retrieving and injecting massive schedule availability blocks and provider directories
into the context window. This results in a high “Cold Start” volume (> 8, 500 tokens).
However, our routing mechanism ensures that this heavy context is cached, keeping subsequent
turn latency low despite the massive prompt size.

• Discharge Follow-Up (Long-Horizon Dialogue): The Inpatient Discharge workflow
represents a “depth” challenge, often exceeding 60 turns as the agent reviews complex post-
acute care instructions. The steady-state caching prevents latency degradation even as the
conversation history approaches the context window limit.

• Care Gap & Welcome Calls (Standard Clinical): Routine outreach workflows (e.g.,
Care Gap Closure) exhibit a balanced profile, where the system efficiently manages state
verification without incurring the re-computation penalties typical of stateless architectures.

Table 8: Profile of Analyzed Production Workloads. We selected five representative workflows
to demonstrate cache efficiency across varying context lengths (RAG intensity) and conversation
depths (Turn count).
Clinical Workflow Workload Characteristic Context Profile
Inbound PCP Office + Scheduling High-Context RAG (Schedule Injection) Heavy Initial Load
Inpatient + Discharge Follow-Up Long-Horizon Diagnostic Dialogue Linear Growth (High Depth, > 60 turns)
Care Gap Closure Protocol-Driven Interview & Longitudinal Follow-ups Balanced (Moderate Depth, > 50 turns)
Insurance Benefits Engagement & Verification Short-Horizon
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6 Improved Orchestration Features

6.1 Appointment Scheduling Online Verifier

Scheduling medical appointments with generative AI is uniquely challenging: it requires extremely
high accuracy, minimal hallucination rate, and the ability to handle unpredictable real-world behavior.
Patients routinely change preferred times, reject available slots, or seek multiple appointments
across different specialties. Many scheduling calls are also clinically rich, involving medications,
symptoms, or abnormal labs/vitals, which means the system must distinguish when to book a
routine appointment, an acute appointment, and when to advise the patient to seek urgent or
emergency care. 2.74% of our scheduling calls involve patients sharing one or more symptoms they
are experiencing. As an example, consider the overview of a call that features a highly complex
patient describing multiple recent falls (including hitting her head), severe weakness, osteoporosis,
a painful hip she’s afraid is injured, Crohn’s disease with extreme GI symptoms, medication side
effects, and clear emotional distress and depression. The Polaris AI agent spends time listening,
reflecting her feelings, and untangling a messy history of ER visits, GI care, and failed provider
fit, while repeatedly validating how overwhelmed and scared she feels. Instead of treating this as a
routine scheduling request, the system recognizes the combination of falls, possible hip injury, head
strike, profound weakness, bruising, and mental health strain as high risk, and ultimately routes her
to a live team member for more urgent evaluation and care coordination. This preserves clinical
urgency and ensures she isn’t left waiting for a standard office visit when her situation needs human
judgment and potentially faster intervention.

To ensure reliability in this high-stakes setting, we introduce a hybrid online verifiers’ framework
composed of rule-based and model-based verifiers. These verifiers monitor the agent’s actions in
real time, confirming that proposed appointments actually exist in the scheduling system and
immediately correcting errors such as booking inconsistencies or appointment hallucinations. The
primary safety target is the hallucinated appointment rate – the rate at which the system tells a
patient that an appointment was booked when it was not.

Across thousands of audited scheduling-related interactions, the Polaris AI agent had a halluci-
nation rate of 0.49%. However, with the online verifier enabled, the scheduling hallucination rate
sharply dropped to 0.13% allowing the system to self-correct during the course of the conversation.
The remaining 0.13% hallucinations were subsequently caught by offline model-based verifiers within
minutes, giving operational teams enough time to call the patient back and correct the information.
This combination of real-time and near-real-time verification enables medical-grade scheduling
performance even in complex, clinically detailed conversations.

6.2 IVR Navigation, Policy Quoting / RAG

Agents navigate payer/provider Interactive Voice Response (IVR) systems and quote policies exactly
with citations, using a Retrieval-Augmented Generation (RAG) stack built in Polaris 4; policy-
quoting accuracy sustains 99.4% at larger scale [3]. The retrieval layer uses an embedding model that
is fine-tuned with contrastive learning on a diverse mixture of domains, including payer/provider
IVR scripts, policy documents, and durable medical equipment (DME) manuals. During fine-tuning
we mine hard negatives across domains, which improves discrimination between closely related policy
clauses and enables one unified retriever to serve heterogeneous use cases such as IVR navigation,
policy quoting, and DME operating guidance.

Polaris 4 supports a wide variety of document formats commonly encountered in payer/provider
operations, including semi-structured tables, FAQ-style Q&A, long-form manuals, and plan policy
PDFs. We design customized indexing pipelines for each document type, including table-aware
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chunking and header propagation for tabular files, as well as semantic segmentation strategies for
long-form manual documents, so that semantically corresponding queries are consistently mapped
to the appropriate segment chunks in the embedding space for retrieval. Internal evaluations on
policy-quoting workloads show that our customized indexing strategy yields 99.4% accuracy at scale,
which in turn enables agents to quote policies exactly with citations.

To further control hallucinations, Polaris 4 incorporates two LLM-as-judge verifiers around the
generator. A retrieval verifier first inspects candidate context chunks and filters out passages that
are irrelevant to the user’s query, reducing the chance that spurious context will steer the model
off-policy. A generation verifier then evaluates whether the drafted answer is fully grounded in the
remaining retrieved evidence; if unsupported content is detected, the system triggers a constrained
revision step. This two-stage verification effectively drives hallucination rates to 0.01% in offline
evaluations while preserving the accuracy of policy quote.

6.3 Documentation Reconciliation / Form Fill

Conversational LLM systems in task-oriented settings are expected to transform patient–agent dia-
logues into structured records that can be consumed by downstream workflows such as appointment
scheduling and clinical follow-up orchestration. We refer to this end-to-end capability as the Form
Fill system. In this section, we formalize the Form Fill problem, describe the hybrid online–offline
architecture used in our deployment, and summarize its empirical performance under realistic noise
and backend constraints.

Form Fill operates over multi-turn, voice-based conversations that are first transcribed by an
Automatic Speech Recognition (ASR) system and then processed by an LLM. Formally, we model
each interaction as a dialogue (D = (u1, . . . , uT )) of transcribed user and agent utterances, and
the target output as a structured record y = (y1, . . . , yK) comprising fields needed by downstream
systems (e.g., name, phone number, email addresses, contact details, preferences, question responses)
together with derived actions such as follow-up questions or appointment requests. Each conversation
is associated with a form template that specifies which pieces of information should be collected. We
denote the form schema by F = {(qk, τk)}K

k=1, where qk is the k-th scripted question and τk is the
type or domain of the corresponding field (e.g., name, phone number, email address, preferences).
The target output of Form Fill is then a structured record, with each yk belonging to τk or a special
symbol ⊥ indicating that the field is not filled, i.e., yk ∈ {τk, ⊥}.

The core difficulty is that user-provided information is often fragmented, off-script, and revised
over time: answers may be implicit, spread across multiple turns, or contradicted and corrected
later in the call. The questions could be asked in various ways and orders, spread over multiple
turns, or completely skipped. In addition, ASR and LLM interaction introduces its own class of
errors, so the LLM must extract correct structured information from noisy text while maintaining
alignment between evolving dialog context and the underlying information needs.

6.3.1 Hybrid Online-Offline Architecture

To handle these challenges, we implement Form Fill as a hybrid online-offline process rather than a
single-pass extractor.

The online component runs during the conversation and is optimized for responsiveness and script
alignment. During each conversation, it maintains the form questions {q1, . . . , qK} from the schema
F defined above and, for each dialog prefix D1:t, performs question detection to identify which
question, if any, is currently being addressed. Conditional on a non-null prediction ı̂t ∈ {1, . . . , K},
an answer extraction component then proposes a candidate value ŷonline

ı̂t
based on a localized context
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window around ut. This coupling between the detected question and extraction context reduces
spurious matches and keeps the evolving record aligned with the script as the call unfolds.

After the call completes, an offline phase operates over the full transcript D. A reconciliation step
re-scans the entire conversation and, for each field k, collects one or more candidate answers together
with supporting evidence, producing a second set of candidates {ŷoffline

k }K
k=1 that is independent of

the online alignment. Because it has access to all turns, this step can recover answers that were
missed online (for example, when the user answers a question before it is asked or much later in the
call) and flag fields for which multiple, conflicting values were mentioned. A subsequent arbitration
step then combines online and offline candidates, together with other metadata to select a final
value yk or mark the field as unresolved.

In effect, the online component provides a low-latency initial record, while the offline reconcilia-
tion–arbitration pipeline acts as a consistency check and late-correction mechanism that improves
overall accuracy without impacting the live user experience. All reported accuracy numbers in this
section are computed over the final post-arbitration record y.

6.3.2 Edge Cases, Safety Mechanisms, and Downstream Workflows

In practice, Form Fill must remain reliable in the presence of several recurring edge cases. High-stakes
fields such as names, phone numbers, email addresses, medication names, and dates are particularly
sensitive to ASR errors, tokenization issues, and model hallucinations: a single substitution or
transposition can result in an erroneous record. To reduce silent failures on these fields, the system
applies a require confirmation policy: candidate values are surfaced back to the user in natural
language, and only explicitly confirmed values are committed to the structured record. This
introduces a small interaction cost but substantially lowers the risk of incorrect records.

A second failure mode is de-synchronization between the conversation and the underlying form,
especially in longer calls with digressions and clarifications. If the model over-relies on distant
context, it may attach an answer to the wrong question or overwrite a previously correct field with
an unrelated value. To mitigate this, the online question detection component is constrained to
operate over a narrow, recency-weighted context window that is explicitly anchored to the current
script state. This reduced-context design makes the question detection step more reliable.

Finally, the structured record y produced by Form Fill drives downstream workflows such as
appointment scheduling and follow-up creation. In these cases, the system must translate y into
concrete tool calls (for example, constructing API requests to scheduling backends) and ensure
that the resulting actions respect constraints such as availability, timing, and basic eligibility rules.
We therefore treat tool invocation as part of the Form Fill pipeline and apply the same principles
of explicit confirmation for high-impact actions, conservative handling of ambiguous inputs, and
post-hoc consistency checks before any irreversible operation is executed.

6.3.3 Evaluation and Empirical Performance

We evaluate Form Fill at the level of individual fields and end-to-end task outcomes. For structured
records, we use field-level exact-match accuracy: the fraction of fields whose final value yk exactly
matches a human-validated label. This is directly analogous to slot accuracy in dialogue state
tracking. For Form-Fill evaluation, we ran human review on a randomly sampled 2.5% of all
production calls, with sampling configured to cover diverse use cases and a mix of long and short
conversations and forms with many or few questions. In these audits, human experts re-checked
every Form Fill field.

Across two recent evaluation windows in Q4 2025, the fraction of fields that required correction
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was 0.117% and 0.17%, corresponding to field-level exact-match accuracies of 99.883% and 99.83%,
respectively. Among calls that contained at least one Form Fill error, 60% were attributable to
upstream ASR problems, or application orchestration issues, including cases where Form Fill was
not configured, and 40% were due to intrinsic detection or extraction errors in the Form Fill model
itself. At the call level, the fraction of audited calls with at least one corrected Form Fill field was
0.58% and 0.44%.

Our model’s observed accuracy improved from 98.5% (Polaris 3) to 99.86% [3] in Polaris 4, with
a substantial subset of residual errors arising outside the core detection and extraction components.

7 Multilingual Continuity and Equity
Building a safe and equitable phone-based clinical AI assistant requires robustness across linguistic,
cultural, and interactional variability. Spoken dialogue introduces cascading sources of error—accents,
dialects, code-switching, low-resource language features, and pragmatic differences—that dispro-
portionately affect non-English speakers. These breakdowns can directly translate into safety risks
during real-time care. We highlight the key failure modes and our corresponding mitigation strategies
below.

7.1 Accuracy Gaps in ASR/TTS/LLM

Multilingual speech understanding remains challenging: multilingual ASR systems typically regress in
word-error rate (WER) relative to language-specific models. A common failure—such as interpreting
the Spanish “sí” (“yes”) as the English letter “C” or the English terms "Sea" or "See"—illustrates
how small transcription errors can propagate into incorrect clinical confirmations. Although English
ASR achieves low WER, many languages show substantial degradation. Arabic is particularly
difficult due to wide phonetic variability, scarce training data, and major dialectal divergence (e.g.,
Hejazi, Emirati, Khaleeji). Medication terminology further amplifies these issues, with generic
Arabic ASR systems often exceeding 30% WER on medication names.

To mitigate these errors, our system performs continuous language identification and rapid
automatic switching across ASR, TTS, and LLM modules. Rather than assuming a monolingual
caller, it maintains a parallel multilingual safety state for English, Spanish, and Arabic, enabling
millisecond-level realignment when users code-switch. Medication entities, numerals, and safety-
critical context are preserved across language boundaries.

For Arabic, we use multi-ASR ensembling with medication-focused decoding pipelines. Models
vote on medication entities using phonetic similarity scoring and transliteration harmonization,
substantially reducing the high WER typical of general-purpose systems.

7.2 Dialectal and Cultural Variability

Dialectal and cultural differences shape how callers express needs, describe symptoms, and interpret
tone. Spanish speakers vary in politeness markers and directive strength across Mexico, Puerto
Rico, and U.S. immigrant communities. Arabic dialects diverge to the point that phrases acceptable
in Modern Standard Arabic may sound overly formal or confusing in Gulf dialects. These stylistic
shifts require dynamic detection and adaptation mid-call to maintain clarity and trust.
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Table 9: Safety Performance of Polaris Model Family and Human Clinicians.
Model Correct Advice No Harm Minor Harm Severe Harm Death
Polaris 4.0 99.90% 0.10% 0.00% 0.00% 0.00%
Polaris 3.0 99.38% 0.55% 0.07% 0.00% 0.00%
Polaris 2.0 98.75% 1.02% 0.13% 0.10% 0.00%
Polaris 1.0 93.23% 4.55% 1.83% 0.32% 0.06%
Human Clinicians 81.16% 14.72% 4.12% 0.00% 0.00%

7.3 Mid-Call Language Switching and Multilingual Interference

Code-switching—especially between English and Spanish or Arabic—is common when callers
reference numbers, medications, or insurance/legal terms. Traditional ASR systems often treat this
as noise, causing incorrect entity extraction and mismatched safety prompts. Multilingual ASR
models can also blend languages, silently injecting cross-lingual synonyms that lead to unsafe LLM
inferences. Spanish and Arabic illustrate two critical but distinct cases: Spanish as a high-volume
U.S. language with strong bilingual patterns, and Arabic as a lower-resource, highly dialectal
language. Our multilingual and dialect-aware safety strategies produced measurable improvements
in deployment. We highlight the case of a patient contacted during one of our summary heat-
wave safety outreach programs. Although the AI agent began the call by introducing itself in
English, the patient responded solely in Spanish, stating that they did not speak any English. Our
system recognized the mid-call language shift and automatically switched the ASR, TTS, and LLM
components to their Spanish counterparts, and completed the rest of the call in Spanish.

8 Uncompromising Clinical Safety
Safety remains the cornerstone of the system, with Polaris 4 achieving a 99.9% no-error rate (0.1%
no-harm errors and 0% minor harm, severe harm or death) across all connected calls as shown in
Table 9, surpassing prior versions and even average human clinician performance for equivalent tasks2.
The clinical escalation system relies on specialized agents—covering labs and vitals, medications,
and escalations—with higher accuracy and more up-to-date knowledge than prior versions, which is
especially relevant for understanding new medications. These agents collaborate to ask targeted
follow-up questions, reducing aggregate over-escalation rates while preserving safety. In Polaris 4,
the labs and vitals specialist had an error rate of 0.005%, the medication specialist 0.01%, and the
escalation specialist 0.07%, with all errors across agents classified as “no harm”. These results show
a significant improvement when compared to Polaris 3, as shown in Table 10.

In August of 2025, the overall escalation rate out of all connected calls—defined as any call
requiring immediate transfer to a human or review within 24 hours—was 0.77%, down from 3.4% in
June of 2025, while the calls that required an immediate transfer were 0.26%, down from 1.22%. At
the same time, the proportion of connected calls categorized as “no-harm” decreased fivefold, from
0.5% to 0.1%. This reduction balances autonomy with human oversight, minimizing unnecessary
transfers that could overwhelm human teams [24, 2, 23] while developing the safest generative AI
system for healthcare.

2Assessed by Human US Licensed Physicians and US Licensed Nurses
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Table 10: Escalation rates and error rates for Polaris 3 and 4.
Metric Polaris 4.0 Polaris 3.0
Escalation Rate – Overall 0.77% 3.40%
Escalation Rate – Immediate 0.26% 1.22%
Error Rate – Lab/Vital 0.005% 0.06%
Error Rate – Medication 0.01% 0.02%
Error Rate – Escalation 0.07% 0.32%

9 Evaluation at Scale: RWE-LLM in Practice

9.1 Overview of the Evaluation Framework

The evaluation of the updated AI care agent builds on the Real-World Evidence LLM (RWE-LLM)
methodology described in the Hippocratic AI Safety Framework [8]. This methodology integrates
clinician simulation, on-policy testing, automated LLM-based rater assessments, and retrospective
safety reviews. Together, these components allow for continuous validation of safety, reliability,
conversational quality, and equity performance. Unlike traditional model evaluation pipelines
that rely solely on offline test sets, the RWE-LLM system incorporates evidence from large-scale,
production-proximal interactions, enabling more accurate detection of failure modes and contextual
performance variation.

9.2 Clinician Simulation

Clinician simulation serves as the foundation of the evaluation process. More than 7,000 licensed
clinicians have participated in simulation efforts to date, generating over 500,000 structured test calls
in which each clinician interacts with the AI as they would with a real patient. These interactions
capture detailed feedback on clinical reasoning, medication safety, benefit and identity verification,
symptom clarification, and escalation accuracy. Prior research demonstrates that clinician-generated
labels reliably capture safety-critical judgments in conversational agents [27, 28]. The resulting
label corpus provides training and calibration signals for verifier models, alignment layers, and
task-specific guardrails. This simulation pathway allows early identification of confusion patterns,
conversational breakdowns, or clinical reasoning deficits before models are exposed to patient-facing
environments.

9.3 On-Policy Evaluation Under Real Conditions

On-policy evaluation complements clinician simulation by testing the system under realistic conversa-
tional conditions. These evaluations expose the AI agent to natural user variability, including accent
diversity, background noise, partial disclosures, interruptions, and heterogeneous communication
styles. Model variants are compared across metrics such as safety-event frequency, escalation
accuracy, procedural correctness, benefits verification accuracy, and patient-reported satisfaction.
This methodology is especially important for assessing the governed orchestration layer described in
the Safety Framework, which enforces preconditions, input validation, and post-condition checks to
ensure safe execution of sensitive tasks [8]. On-policy testing is therefore the primary mechanism
for detecting safety breakdowns that may not emerge in scripted test environments.
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9.4 Automated Rater Assessment

Automated raters extend evaluation coverage by applying LLM-based scoring systems trained on
clinician-generated labels. These raters assess conversational quality, coherence, tone, empathy
alignment, motivational interviewing technique, clarification depth, and policy adherence. Automated
evaluation enables continuous model monitoring and rapid iteration cycles by scoring every call
rather than a small subset. This is particularly important in memory-enabled contexts, where
the agent must make contextually appropriate references to prior interactions. Evidence from the
multi-call memory study indicates that each additional memory reference extends call duration
by approximately 2.47 minutes without lowering satisfaction [15], underscoring the value of rater
systems that evaluate memory relevance, appropriateness, and timing.

9.5 Retrospective Safety Review

Retrospective reviews serve as the final component of the RWE-LLM framework. These reviews
examine transcripts, escalation logs, incident reports, and verified safety events to identify emergent
or rare error modes. The insights generated from these reviews feed into updates to safety verifiers,
escalation logic, tone-modulation strategies, and conversational-policy constraints. As emphasized
in the Safety Framework, ongoing retrospective analysis plays a crucial role in ensuring that model
evolution remains aligned with clinical expectations and organizational governance requirements [8].
Together, these review processes integrate past experience into future system behavior, forming a
closed-loop safety ecosystem.

9.6 External Validation Through Case Studies

Real-world deployments further validate the RWE-LLM framework. Case studies from large health-
plan implementations demonstrate that the evaluation architecture remains robust when applied
to high-volume, complex workflows such as benefit verification, care-gap closure, appointment
coordination, longitudinal care management, and multi-call continuity [8]. Across these domains, the
RWE-LLM system consistently identified failure modes early and guided model updates that improved
reliability and safety. This cross-setting consistency supports the framework’s generalizability across
clinical, administrative, and preventive-care contexts.

10 Operational and Clinical Impact Across Settings

10.1 Overview

Deployments of the AI care agent across administrative, clinical, and preventive-care workflows
have generated consistent improvements in operational capacity, engagement, and clinical process
reliability. Health systems report increased workflow throughput, more reliable benefits verification,
improved care-gap closure, and greater adherence to chronic-care protocols [1]. These gains emerge
from the agent’s ability to handle repetitive communication tasks with high consistency, freeing
clinical and administrative staff to focus on cases requiring human judgment.

10.2 Safety Validation at Clinical Scale

Prior to real-world deployment, the AI care agent underwent the largest empirical safety validation
study conducted for healthcare AI to date. This nationwide evaluation encompassed 306,965 unique
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clinical interactions assessed by 6,527 licensed US clinicians—including 6,294 registered nurses and
233 physicians—spanning all 50 states and the District of Columbia.[8]

The validation framework employed a novel three-tier methodology emphasizing comprehensive
output testing rather than input validation. Tier 1 involved direct AI–clinician interaction testing,
where participating clinicians engaged with the system and flagged safety concerns. Tier 2 consisted
of systematic review by specially trained internal nursing teams who assessed clinical validity of
flagged concerns and determined severity levels. Tier 3 provided independent physician adjudication
for complex cases, with emergency medicine and primary care physicians delivering definitive clinical
judgment on safety implications.

This approach directly addressed fundamental limitations in current healthcare AI evaluation,
which typically relies on benchmark testing of hundreds rather than hundreds of thousands of
interactions. By testing actual system outputs across diverse clinical scenarios—including routine
care coordination, medication management, chronic disease education, and emergency situations
requiring escalation—the framework provided validation coverage orders of magnitude greater than
traditional approaches.

The validation demonstrated substantial measurable safety improvements across four develop-
mental iterations of the system. Correct medical advice rates progressed from approximately 80% in
baseline testing to 99.58% (95% CI: 99.53%–99.63%) in the final version.[8] This 19.58 percentage
point improvement represents a clinically meaningful advancement achieved through systematic
validation-driven development.

Critically, potentially harmful advice was reduced to near-zero levels. Incorrect advice with
potential for minor harm declined from 1.89% (95% CI: 1.67%–2.14%) in early iterations to
0.08% (95% CI: 0.06%–0.11%) in the final version—a 95.8% relative reduction. Incorrect advice
with risk of severe harm decreased from 0.33% (95% CI: 0.25%–0.44%) to 0.00%, representing
complete elimination of severe harm risk. Risk-of-death errors, initially present at 0.05% (95% CI:
0.03%–0.11%), were eliminated entirely in later versions, maintaining 0.00% rates across subsequent
iterations.[8]

These quantitative outcomes establish new empirical benchmarks for healthcare AI safety,
demonstrating that systematic validation can achieve safety standards exceeding typical human
clinical communication benchmarks. The progressive improvement across system iterations provides
the first large-scale empirical evidence that comprehensive pre-deployment validation can ensure AI
safety in healthcare settings, challenging the widespread assumption that safety can be inferred
from training data quality alone.

10.3 Impact on Chronic Disease Monitoring

The remote patient monitoring program in nephrology provides one of the clearest illustrations
of system-level clinical impact. Among 5,590 older adults across 18 states, a single AI-delivered
welcome call more than doubled maximum call duration (205 to 431 seconds), increased verified call
rates from 11.9% to 30.5%, and increased call-completion rates from 46.2% to 62.4% [14]. These
effects persisted across age, sex, and region, with regression models explaining less than 2% of
variance, demonstrating broad generalizability even in patients aged 75 years and older. Improved
engagement led directly to more reliable monitoring of blood pressure, faster follow-up for abnormal
values, and improved adherence to chronic kidney disease management protocols.
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10.4 Longitudinal Interaction Quality Through Multi-Call Memory

The addition of multi-call memory further strengthens the agent’s impact across longitudinal
care pathways. Memory-enabled conversations were shown to increase behavioral engagement
substantially, with each additional memory reference increasing call duration by an average of 2.47
minutes [15]. Although satisfaction levels remained stable, the increased depth and continuity of
these conversations allowed patients to engage more fully, supporting richer discussions and more
coherent interactions across repeated encounters. This type of longitudinal coherence is especially
valuable in chronic disease management, where repeated reinforcement of goals and understanding
of patient-specific barriers are essential.

10.5 Reduced Disparities Through Multilingual Preventive Outreach

Preventive outreach results demonstrate the potential of AI agents to reduce disparities in pop-
ulation health. In a multilingual colorectal cancer screening initiative, Spanish-speaking pa-
tients—historically exhibiting lower screening rates—showed significantly higher engagement, includ-
ing connect rates of 69.6% versus 53.0% among English speakers, and more than twice the FIT test
opt-in rate (18.2% vs. 7.1%).[26] After adjusting for demographic and call-level variables, Spanish-
speaking patients remained twice as likely to opt in to screening (adjusted OR 2.012) (Bhimani
et al., 2025). These findings challenge the assumption that AI disproportionately disadvantages
non-English-speaking populations and instead suggest that language-concordant AI communication
can meaningfully reduce screening disparities.

10.6 Workflow Integration and Health-Plan Outcomes

Large-scale health-plan deployments demonstrate additional operational benefits. Organizations
using the AI agent for outreach, care-gap closure, and member engagement reported higher connection
rates and more consistent reach across eligible populations.[1] These findings align with the Safety
Framework’s emphasis on workflow integration, in which AI systems augment rather than replace
staff by taking on repetitive communication tasks and providing stable capacity during periods
of variable staffing. In the context of chronic disease monitoring, increased engagement observed
in the nephrology remote-monitoring cohort further demonstrates how improved communication
consistency can support downstream adherence behaviors.[14]

10.7 System-Wide Deployment and Operational Efficiency

The transition from pilot studies to enterprise-wide implementation represents a critical inflection
point for healthcare AI. A 13-month prospective implementation study at WellSpan Health—an
integrated health system serving south-central Pennsylvania and northern Maryland—provides
the first comprehensive evidence of autonomous AI deployment as a system-wide capability rather
than an isolated intervention.[29] From September 2024 through September 2025, the AI voice
assistant ("Ana") conducted nearly 2 million patient conversations across three strategic deployment
categories: targeted outbound campaigns for care gap closure, integrated automated outreach for
routine patient communications, and inbound call management for patient-initiated inquiries.[29]
This scale of deployment—unprecedented for an autonomous healthcare AI agent—demonstrates
the feasibility of AI integration as an enterprise capability.
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10.7.1 Procedural Preparation and Patient Education

In a colonoscopy preparation pilot, the AI agent contacted 1,627 patients who opted in to receive
preparation coaching through a series of structured calls. Among these patients, 30.8% (95%
CI: 28.6%–33.0%) completed full conversations with the agent. Patient experience metrics were
notably strong: among 460 patients providing satisfaction ratings, 65.9% (95% CI: 61.5%–70.3%)
rated likelihood-to-recommend as 9 or 10 on a 10-point scale, with a mean rating of 8.65.[29]
Qualitative analysis of patient feedback identified recurring themes of perceived empathy, patience,
and appreciation for unlimited question opportunities—characteristics typically associated with
high-quality human clinical communication.

10.7.2 Diagnostic Results Communication

For mammogram results delivery, the AI agent reached 11,000 patients with normal results requiring
notification. The system successfully connected with 5,019 patients (45.6%, 95% CI: 44.7%–46.6%)
and completed full conversations with 2,734 (24.9%, 95% CI: 24.1%–25.7%). Patient satisfaction
and likelihood-to-recommend ratings both exceeded 9 on a 10-point scale. The average duration of
the conversation of 3.3 minutes resulted in more than 350 hours of direct patient engagement for
education on annual mammograms and scheduling assistance for subsequent screenings [29].

10.7.3 Workforce Augmentation in Primary Care

The most substantial operational impact emerged in primary care call center deployment. WellSpan’s
primary care call centers had historically struggled with staffing shortages, operating at only 50%
practice coverage with significant patient wait times. Following AI implementation, the system
achieved dramatic capacity expansion [29]:

• Practice coverage expanded from 50% to 100% of primary care practices

• The AI agent managed more than 50% of all phone-scheduled appointments

• Weekly talk time averaged 850 hours, equivalent to the workload of 28 full-time call center
specialists

• Patient refusal to engage with the AI agent remained below 3%

• Efficiency gains effectively doubled staff productivity, enabling the call center to manage twice
the workload without additional human staffing

The AI agent was initially deployed to handle routine requests—operating hours, directions, parking
information—freeing staff for complex calls requiring human judgment. Subsequently, its role
expanded to include scheduling acute and routine primary care appointments, demonstrating
successful scope extension based on validated performance.

10.7.4 Implementation Success Factors

Several factors distinguished this enterprise implementation from typical pilot studies. The health
system treated AI as a system-wide capability requiring governance standards rather than an
isolated technology deployment. Multidisciplinary teams including nurses, physicians, administrators,
and quality improvement specialists collaborated with the AI development team to map patient
journeys, identify intervention points, create conversation scripts, and develop safety protocols for
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clinical escalation.[29] Frontline staff involvement throughout design and implementation proved
critical—staff created and reviewed test conversations, provided feedback to refine delivery, and
developed escalation pathways that route clinical or urgent issues appropriately. This user-centered
approach, combined with clinical oversight, enabled the transition from isolated pilots to sustained
operational deployment at scale.

10.8 Patient Experience and Satisfaction Outcomes

Across diverse clinical applications, the AI care agent consistently achieved patient satisfaction
metrics comparable to or exceeding benchmarks for human-delivered care. This pattern of high
satisfaction emerged with patients’ awareness that they were interacting with an AI system.

In the WellSpan implementation, satisfaction scores ranged from 8.65 to above 9.0 on 10-
point scales across all deployment categories.[29] The colonoscopy preparation pilot achieved a
mean likelihood-to-recommend score of 8.65/10, with nearly two-thirds of respondents (65.9%)
providing promoter-level ratings of 9 or 10. Mammogram results delivery maintained satisfaction
and likelihood-to-recommend averages above 9/10.

Qualitative feedback from patients revealed several themes explaining high satisfaction with
AI-mediated communication [29]:

• Perceived empathy: Patients frequently commented on the AI agent’s empathetic tone and ap-
parent understanding of their concerns, suggesting successful implementation of conversational
design principles emphasizing warmth and acknowledgment.

• Patience and availability: Unlike time-constrained human interactions, patients appreciated the
AI agent’s unlimited availability for questions without perceived time pressure—a characteristic
documented in prior qualitative research on patient preferences for AI communication.[30].

• Consistency: The standardized yet personalized delivery ensured all patients received complete,
accurate information regardless of when they called or which agent instance they reached.

These satisfaction findings challenge assumptions that patients inherently prefer human commu-
nication for healthcare interactions. When AI systems are designed specifically for empathetic,
patient-centered conversation, rather than transactional information exchange, patient acceptance
and satisfaction can match or exceed traditional delivery models. The high satisfaction levels
observed across diverse use cases (e.g., procedural preparation, diagnostic results, appointment
scheduling) suggest this pattern generalizes across healthcare communication contexts.

10.9 Summary of Impact

The accumulating evidence supports the conclusion that AI-mediated communication can enhance
care delivery by augmenting rather than replacing human clinicians, expanding care-team capacity, en-
suring consistent high-quality interactions for all patients, and—when properly validated—achieving
safety standards that match or exceed human clinical communication. The framework demonstrates
that treating interaction intelligence as a first-class safety variable, combined with rigorous pre-
deployment validation, enables deployment of autonomous AI agents that improve outcomes across
the quadruple aim of healthcare: better patient experience, improved population health, reduced
costs, and enhanced clinician well-being through workload redistribution.
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11 Related Work
Traditional healthcare LLM benchmark evaluations were mostly hinged on static, offline bench-
marks which usually materialized as multi-choice Q/A fashion or report summarization. While
such datasets offer convenience and reproducibility, they systematically miss the dynamic signals
including contextual drift, longitudinal consistency, interpersonal variability, tool-use, and uncer-
tainty negotiation that arise in authentic interactions. These benchmarks span a range of formats
including classification, question answering, text and code generation, but share a common design
pattern: each example is a self-contained input (a note, report, question, or schema) paired with a
single “correct” output, and models are scored with pointwise metrics such as exact match, F1, or
LLM-jury scores. For example, MedCalc-Bench[38], CLEAR[39], Medec[40], EHRSHOT[41], and
ADHD-Behavior[42] / ADHD-MedEffects[43] evaluate classification or computational reasoning
from notes and EHR codes, asking models to detect conditions, compute risk or severity, or flag
documentation errors. Knowledge-focused QA sets such as HeadQA[44], MedBullets[45], MedQA[46],
MedMCQA[47], PubMedQA[48], MedicationQA[49] test exam-style or snippet-grounded questions
with multiple-choice or binary answers. A large family of generation benchmarks—DischargeMe[50],
MedAlign[51], ACI-Bench[52], MIMIC-RRS[53], MIMIC-IV-BHC[54], and MedDialog[55]—measure
how well models summarize notes, radiology reports, or conversations and produce treatment
plans, discharge instructions, or empathetic counseling responses, typically via rubric-based LLM
juries. Other datasets target operational and safety-adjacent tasks such as identifying PHI or pri-
vacy risk (MedConfInfo[56], PrivacyDetection[58]), proxy senders (ProxySender[58]), hallucinations
(MedHallu[59]), or research-oriented code generation from natural language (EHRSQL[60]). While
these benchmarks are valuable for coverage and comparability across models, they all instantiate the
static offline paradigm: the model is evaluated on frozen, de-identified artifacts, with no real-time
interaction, feedback, or evolving context. Tasks are typically single-shot and decontextualized (e.g.,
one question, one note, one discharge summary), and success is reduced to matching a reference label
or receiving a high rubric score on a single response. As a result, these datasets provide snapshots
of task competence rather than measuring how a system behaves over multi-turn, safety-critical
episodes: they do not capture longitudinal patient trajectories, dynamic clinical decision-making,
tool use, knowledge drift, user misunderstanding, or the role of redundancy and cross-checking
between agents.

12 Conclusion
By grounding the system design for Polaris in real patient interactions and governed telemetry,
we reliably improved safety, empathy, equity, and workflow outcomes at clinical scale to build the
safest generative AI system for healthcare. Production telemetry drives the architecture. Elevating
interaction micro-skills to safety variables, investing in modality-specific models (e.g., contextual
ASR), and leveraging hardware-aware serving unlocks non-linear gains for voice in healthcare.
Orchestration designed for real workflows, validated under RWE-LLM, turns conversational quality
into reliable clinical and operational outcomes. The production-first approach links signals to
solutions to impact, providing a repeatable path for continued progress.
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