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1 Abstract
Supportive conversation depends on skills that go beyond language fluency—reading emotions, adjusting
tone, and navigating moments of resistance, frustration, or distress. Despite rapid progress in language
models, we still lack a clear way to understand how their abilities in these interpersonal domains compare
to those of humans. We introduce HEART, the first-ever framework that directly compares humans and
LLMs on the same multi-turn emotional-support conversations. For each dialogue history, we pair human
and model responses and evaluate them through blinded human raters and an ensemble of LLM-as-judge
evaluators. All assessments follow a rubric grounded in interpersonal communication science across five
dimensions: Human Alignment, Empathic Responsiveness, Attunement, Resonance, and Task-Following.
HEART uncovers striking behavioral patterns. Several frontier models approach or surpass the average human
responses in perceived empathy and consistency. At the same time, humans maintain advantages in adaptive
reframing, tension-naming, and nuanced tone shifts, particularly in adversarial turns. Human and LLM-as-
judge preferences align on about 80% of pairwise comparisons, matching inter-human agreement, and their
written rationales emphasize similar HEART dimensions. This pattern suggests an emerging convergence
in the criteria used to assess supportive quality. By placing humans and models on equal footing, HEART
reframes supportive dialogue as a distinct capability axis, separable from general reasoning or linguistic
fluency. It provides a unified empirical foundation for understanding where model-generated support aligns
with human social judgment, where it diverges, and how affective conversational competence scales with
model size.

2 Introduction

Large language models (LLMs) have achieved sub-
stantial progress in reasoning, planning, and language
generation. Yet real-world interaction often requires
more than producing accurate information: it re-
quires responding to people in ways that feel sup-
portive, attuned, and relationally appropriate. In
high-stakes settings such as healthcare, counseling,
and education, supportive communication is associ-
ated with trust, adherence, and improved outcomes
(Hojat et al., 2019; Howick et al., 2018; Elliott et al.,
2018). These cases highlight that successful conver-

sation is not solely defined by informational correct-
ness, but also by the ability to recognize emotional
cues, acknowledge concerns, and respond construc-
tively across a developing interaction.

However, whether contemporary models generate
text that is socially aligned, i.e., consistent with hu-
man judgments about emotionally appropriate, sup-
portive responses in context, remains insufficiently
understood. Prior benchmarks have primarily em-
phasized cognitive or factual tasks, such as classifi-
cation, summarization, or multi-step reasoning, leav-
ing the interpersonal dimension of dialogue largely
untested (Castillo-Bolado et al., 2024; Paech, 2024).
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As a result, there is limited empirical evidence on how
LLMs perform when the goal is not to provide infor-
mation, but to offer emotional support in evolving,
potentially vulnerable contexts.

Evaluating these behaviors poses fundamental
challenges. Supportive dialogue unfolds across multi-
ple turns and depends on pacing, acknowledgment,
and responsiveness to emotional signals. Yet ex-
isting NLP datasets—such as EmpatheticDialogues
(Rashkin et al., 2019) and EmotionLines (Hsu et al.,
2018)—measure discrete markers of emotion (e.g., la-
bel prediction, lexical warmth), rather than whether
an interaction adapts to the speaker’s emotional
needs over time. Standard metrics such as BLEU
or BERTScore provide little insight into whether a
conversational exchange feels validating, grounding,
or helpfully oriented. Psychological research empha-
sizes perspective-taking, emotional attunement, and
responsive validation as central to supportive inter-
action (Davis, 1983; Reis and Shaver, 1988). Mea-
suring whether language models approximate these
observable behaviors requires frameworks that assess
sustained interaction, not single-sentence affect or
surface-level sentiment cues.

To address this gap, we introduce the HEART
benchmark, a unified framework that evaluates hu-
mans and LLMs side by side in multi-turn support-
ive dialogue, including settings where the speaker
expresses resistance or distress. By placing both
humans and models in the same emotionally sen-
sitive conversational tasks, the benchmark enables
a rigorous comparison of real supportive behavior,
rather than isolated sentiment classification or one-
turn empathy judgments. Importantly, HEART al-
lows direct comparison between humans and models
on the same conversational tasks, providing a shared
evaluative setting for studying supportive dialogue.
HEART evaluates conversations along five dimensions
grounded in communication science—human align-
ment, empathic responsiveness, attunement,
resonance, and task-following—capturing how in-
terpersonal support unfolds across turns (Figure 1).

Our methodology incorporates three core ele-
ments. First, we use emotionally complex, multi-turn
support conversations drawn from ESConv, cover-
ing challenges such as grief, frustration, conflict, and
uncertainty. Second, we introduce adversarial emo-
tional variants in which surface-level warmth fails;
these cases test whether a system adapts to push-
back, distress, or interpersonal tension rather than
relying on polite pattern imitation. Third, we eval-
uate both model-generated and human-generated re-
sponses through pairwise preference judgments. Hu-
man annotators were not exposed to any rubric or

guidelines, ensuring natural evaluation, while LLM-
based judges received the rubric to test structured
evaluative alignment. Human annotators were told
that they would see a dialogue between a seeker and
a supporter, and that their task was to choose the
final supporter message that best continues the con-
versation in a natural and empathic way. This design
permits analysis of two questions: how models per-
form relative to humans, and how well models identify
supportive behavior when acting as evaluators.

Finally, we assess alignment between human pref-
erences and LLM evaluations by collecting human
pairwise judgments without rubric exposure and com-
paring them to LLM-as-judge ratings informed by
structured criteria. This design tests whether mod-
els internalize evaluative patterns that reflect hu-
man social preferences and how such capabilities
scale. Through direct human-model comparison, scal-
ing analysis, and strategy-level examination, we iden-
tify both progress and persistent weaknesses in model
performance under emotional resistance and ambigu-
ity.

Together, HEART offers a principled founda-
tion for evaluating socially aligned conversational be-
havior, clarifying where LLMs approximate human-
preferred support strategies, where they diverge, and
how emotional-support competence scales with model
capability. By providing a shared evaluation space for
humans and LLMs, HEART advances measurement
of interpersonal reasoning in language models and
highlights emerging pathways for socially grounded
AI development.

3 Related Works
Affective reasoning provides a broad umbrella for the
social–cognitive skills our benchmark evaluates. It
encompasses how agents perceive, interpret, and re-
spond to human emotional states, including empathy,
perspective-taking, social inference, emotional regu-
lation, and context-sensitive action selection (Davis,
1983; Zaki and Ochsner, 2012; Zaki, 2014; Cuff et al.,
2016). Decades of psychological research show that
affective reasoning underpins trust formation, adher-
ence, and disclosure in interpersonal and clinical in-
teractions (Hojat et al., 2019; Howick et al., 2018; El-
liott et al., 2018; Street et al., 2009; Taylor, 2011; Bad-
deley and Pennebaker, 2011; Reis and Shaver, 1988).
These frameworks emphasize observable behaviors —
validation, emotional attunement, reframing, collabo-
rative problem-solving, and gentle challenge — rather
than latent emotional states (Wetzel, 2016; Rogers,
1957). HEART adopts this behavioral view by oper-
ationalizing affective reasoning into measurable con-
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versational dimensions.

Emotion recognition and empathy modeling.
Early NLP research focused on single-turn emo-
tion classification using datasets such as Empathet-
icDialogues (Rashkin et al., 2019), EmotionLines
(Hsu et al., 2018), DailyDialog (Li et al., 2017),
GoEmotions (Demszky et al., 2020), MELD (Poria
et al., 2019), and IEMOCAP (Busso et al., 2008).
These datasets capture lexical emotions but encour-
age pattern-matching over context-sensitive reasoning
(Picard, 2010; Wang et al., 2023; Ghosal et al., 2020;
García-Hernández et al., 2024). EMOBench (Sabour
et al., 2024) highlights that many empathy tasks rely
on multiple-choice or explicit cues, limiting ecological
validity. Recent work measuring empathy in LLMs
shows that model-generated responses can be rated
as more empathic than human ones (Ong et al., 2025;
Lee et al., 2024; Welivita and Pu, 2024; Xie et al.,
2024; Ovsyannikova et al., 2025), but these evalua-
tions rarely include multi-turn interaction or emotion-
ally resistant users.

Support-focused dialogue and therapeutic
strategies. Datasets centered on emotional sup-
port, including ESConv (Liu et al., 2021), Coun-
selChat (Bertagnolli, 2020), and crisis-support cor-
pora (Althoff et al., 2016), allow modeling of re-
flective listening, validation, and coping-strategy de-
ployment. Strategy-based prompting frameworks,
such as Chain-of-Empathy (Lee et al., 2023) and
ESConv-SRA (Madani and Srihari, 2025), as well
as conflict-simulation systems like Rehearsal (Shaikh
et al., 2024), aim to scaffold therapeutic micro-skills.
However, evaluation is typically coarse (e.g., classifier
scores, lexical proxies), making it difficult to compare
models and humans under identical conversational
constraints. Counseling literature provides further
evidence that empathic support depends on strategy
diversity and adaptive challenge, not uniform warmth
(Miller and Rollnick, 2013; Rogers, 1957; Elliott et al.,
2018).

Evaluating affective and social reasoning in
LLMs. Recent work suggests that LLMs seem to
be competent at inferring how people might feel in a
given situation (Gandhi et al., 2024; Tak et al., 2025;
Zhan et al., 2023). Work on alignment and LLM-
as-judge methodologies (Bai et al., 2022; Ouyang
et al., 2022; Li et al., 2024; Fu et al., 2023; Ku-
mar et al., 2025) demonstrates that structured rubrics
can approximate human expert evaluations. MT-
Bench and MT-Bench-101 (Li et al., 2024; Bai et al.,
2024) achieve 80–87% human–model agreement but

focus on general helpfulness and reasoning rather
than interpersonal nuance. MultiChallenge (Sird-
eshmukh et al., 2025), PersonConvBench (Li et al.,
2025), Beyond Prompts (Castillo-Bolado et al., 2024),
EQBench (Paech, 2024), and SENSE-7 (Suh et al.,
2025) emphasize multi-turn evaluation, personaliza-
tion, and topic shifts. Yet, these benchmarks do not
systematically measure attunement, relational repair,
or emotional resistance.

Conversational naturalness and human–AI di-
alogue. Conversation-analysis literature identifies
turn-taking, micro-timing, repair sequences, and in-
teractional alignment as hallmarks of natural dialogue
(SACKS et al., 1978; Schegloff, 2007; Brandt et al.,
2023). In HCI, conversational agents are evaluated
on naturalness, fluency, and human-likeness (Hung
et al., 2009; Skantze, 2021; Clark et al., 2019). Voice-
centered benchmarks, such as CAVA (Held et al.,
2025) and DORA (Brandt et al., 2024), demonstrate
that delays of even a few seconds can undermine per-
ceived naturalness. Emotional expressiveness in TTS
has a strong influence on user engagement and sub-
conscious behavior (Zhu et al., 2022). These findings
motivate the evaluation of affective reasoning beyond
text-only settings.

Affective reasoning in health and safety-
critical contexts. Empathic and relational com-
munication predicts improved health outcomes (Ho-
jat et al., 2019; Street et al., 2009; Howick et al.,
2018). Recent work proposes foundational metrics
for evaluating AI healthcare conversations (Abbasian
et al., 2024) and examines the path toward medi-
cally reliable conversational intelligence (King and
Nori, 2025). Clinical communication research fur-
ther stresses boundary-setting, moral sensitivity, and
risk-aware guidance (Elliott et al., 2018; Rider and
Keefer, 2006). These considerations inform HEART’s
Task-following and Attunement axes.

Across these lines of work, HEART extends prior
approaches by (i) placing humans and models under
the same multi-turn, emotionally complex conditions;
(ii) evaluating affective reasoning across five validated
interpersonal dimensions; (iii) including adversarial
emotional-resistance cases; and (iv) jointly analyzing
human and LLM evaluators to reveal alignment gaps
in social judgment.
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Figure 1: HEART dimensions and rubric. Venn-style overview of the five evaluation axes—Human
alignment, Empathic Responsiveness, Attunement, Resonance, and Task-following—with representative sub-
criteria used by raters.

4 Results
Our central question is: how can we systematically
evaluate whether language models match humans in
providing emotionally attuned, safe, and effective
support in high-stakes conversations? The HEART
benchmark addresses this question through 300 dia-
logues that encompass a range of situations, includ-
ing a support seeker hesitating to open up, a student
overwhelmed with work, a parent exhausted from par-
enting, or a friend on the verge of giving up. For each
situation, we get human-written responses and model-
generated responses from multiple people and mod-
els. Pairs of responses are then presented to blinded
judges, who are asked to judge which response feels
more supportive and why.

4.1 HEART Benchmark and evalua-
tion metrics

We introduce HEART as a novel five-axis rubric (Fig-
ure 1) for evaluating emotional support in dialogue,
designed to capture complementary facets of interper-
sonal quality. The dimensions were derived from a
review of counselling-psychology and communication
literature, refined through consultations with prac-
tising clinicians and peer-support practitioners, and

iteratively piloted on a subset of dialogues until an-
notators reached clear, reliable usage of each axis.

HEART is comprised of 5 dimensions for evaluat-
ing supportive dialogue:

• Human Alignment (H): Does the response
sound like something a thoughtful human might
say in this situation, in terms of tone, phrasing,
and conversational flow?

• Empathic Responsiveness (E): Does the
supporter acknowledge and validate the seeker’s
feelings, convey understanding, and avoid judg-
ment or minimization?

• Attunement (A): Does the response track the
specific details and emotional signals in the con-
text (e.g., naming what feels heavy, noticing
shifts in mood) rather than offering generic re-
assurance?

• Resonance (R): Does the supporter move the
conversation forward in a helpful way—for ex-
ample, by asking a relevant follow-up question,
offering a concrete next step, or helping the
seeker clarify what they need?

• Task-following (T): Does the response stay
within scope (e.g., not overstepping clinical
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boundaries), respect safety and role constraints,
and address the seeker’s explicit or implicit
goals?

For each pairwise comparison, LLM judges se-
lect a single winner and provide scores for each di-
mension. Each HEART dimension was judged via
pairwise comparison where the judge was required to
choose a winner (no ties) on a 5-point ordinal pref-
erence scale (ranging from a minimal advantage to a
decisive advantage for one response over the other).
Additional details on the construction and explana-
tion of these subcriteria along with examples are in-
cluded in Section 9.1).

4.2 How do we compare LLMs and hu-
mans on the same benchmark?

To evaluate conversational competence under emo-
tionally charged conditions, we constructed a bal-
anced dataset of 300 dialogue histories, 280 regular
and 20 adversarial, each completed by both human
participants and 16 large language models across 5
model families (dataset construction details in Sec-
tion 9.2).

All 300 dialogue histories were completed by three
independent people (out of a pool of 12), resulting
in 900 completed dialogues. Every completion was
compared in a pairwise fashion (model vs. model
and model vs. human) by 15 independent annota-
tors. Human annotators were not provided with the
HEART rubric and were asked for a justification along
with their pairwise preferences (as shown in Figure 2).
This was a total of 42,000 pairwise comparisons (ad-
ditional details in Section 9.6).

Human responses exhibited wide stylistic varia-
tion but high internal consistency, with inter-rater
reliability (Fleiss’ κ) of 0.673. Qualitatively, humans
used a broader emotional vocabulary and shifted tone
more flexibly, especially when the seeker disclosed
distress or conflict. In contrast, model completions
tended to follow a consistent template but applied
that template with high fluency and affective stabil-
ity.

Annotators repeatedly compared pairs of re-
sponses (human vs. model, or model vs. model)
for the same situation and marked which felt more
empathic or supportive. Those head-to-head results
were aggregated statistically using a Bradley–Terry
model (Bradley and Terry, 1952) to produce Elo-style
ratings. Figure 4 summarizes these results, showing
overall Elo ratings alongside percentile performance
on each HEART dimension.

Figure 2: Example pairwise comparison eval-
uation. Pairwise comparison task used for human
judges, where two responses (A and B) are rated us-
ing a five-point preference scale. This setup allows
direct comparison between human and LLM comple-
tions across identical dialogue histories.

4.3 Correlation in human and model
rationales

We examine whether model evaluators and human
judges converge not only on which reply is better in
a given dialogue, but also on the justification for that
decision (Figure 3). For each pairwise comparison,
human judges provided free-text rationales (without
being provided the HEART rubric), and the LLM-
judge ensemble produced chain-of-thought style ra-
tionales structured around the HEART rubric. We
mapped both to a shared codebook linking phrases
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Figure 3: Example evaluation. Each dialogue presents a multi-turn emotional support exchange between
a seeker and supporter (left). Two candidate responses are evaluated by both human and LLM judges. LLM
evaluators provide graded comparative scores on the five HEART dimensions (“1+” to “1++++”) together
with chain-of-thought rationales, which are aggregated into Elo-style scores and coded for themes in parallel
with human rationales.

(for example, “names the feeling,” “asks for one con-
crete detail,” “offers a doable next step,” “sounds nat-
ural”) to HEART axes and a small set of affective
micro-skills, and residualised length, position, and
verbosity so that associations reflect evaluative con-
tent rather than presentation. This setup reduces the
likelihood that either humans or models are relying
on superficial cues such as response length or formal
politeness alone.

Thematic analysis revealed substantial overlap:
humans and LLMs co-mentioned or co-omitted the
same coded themes in 68% of these agreed cases.
This is a substantial co-occurence rate given the fact
that humans are NOT provided the HEART metrics.
This suggests that when humans and LLMs agree on
which response is better, they are often attending to
similar affective and communicative properties of the
dialogue.

4.4 HEART evaluation agreement
rate compared to humans in judg-
ing empathetic responses

To assess whether models share human evaluative
judgments, we compared pairwise preference out-
comes between human annotators and model-based
evaluators (GPT, Claude, and Gemini). Across 1,125
comparisons, the average human–model agreement
rate was 78.7%, closely matching inter-human agree-
ment of 79.5%. Agreement with humans was highest
for GPT-o3 and lowest for Claude 4.5 Sonnet.

Disagreement patterns cluster primarily around

emotionally ambiguous cases. These are cases where
our 5 human annotators did not have a clear con-
sensus and per-category rankings by the LLM eval-
uators were mixed with no clear winner. Within
these ambiguous pairwise comparisons, human–model
agreement dropped to 61.3%. When disagreement oc-
curred, models were more likely to favor stylistically
warm responses that were not specific to the dialogue
context (for example: I’m really sorry you’re feeling
this way. That sounds really tough.).

Cross-model agreement was consistently high
across evaluator pairs: Gemini–OpenAI (86.9%),
Gemini–Claude (85.9%), and Claude–OpenAI
(85.0%), with an average pairwise agreement of
85.9%. Three-way agreement reached 78.8%. These
results suggest that independent architectures con-
verge on broadly similar heuristics for EQ, while
potentially differing in their underlying reasoning
processes.

4.5 LLMs showcase better affective
reasoning than humans

Human judges frequently preferred LLM-generated
responses over human-written ones in matched sce-
narios. Across all human–model head-to-head com-
parisons on HEART, human raters chose model re-
sponses in 46.8% of cases, with human completions
preferred in only 35.8% of cases (17.4% were ties).
When judged by other LLMs, model completions
were rated as superior to human completions on all
HEART dimensions in 53.3% of comparisons, mirror-
ing this human preference pattern.
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Figure 4: HEART leaderboard with per-dimension percentiles. Each row shows a model’s percentile
on Human alignment (H), Empathic Responsiveness (E), Attunement (A), Resonance (R), and Task-following
(T), alongside overall Elo. Darker colors indicate higher percentile performance. Humans show relatively
balanced performance across dimensions, whereas models display characteristic profiles associated with model
family and alignment. Overall win rate reflects the raw proportion of pairwise A/B comparisons in which a
system’s response was preferred on the primary HEART judgment.
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Figure 5: Performance rises with latency used as a proxy for capacity. Scatter of HEART Elo
versus median time-to-first-token (log scale), derived from AA Analysis Artificial Analysis (2024). Each
point represents a model variant, colored by provider. The dashed horizontal line marks the field mean. See
Section 9.7 for discussion of real-time latency constraints. Latency is shown on a log scale to accommodate
variation across models.

This convergence between human and model eval-
uators suggests that current frontier systems have
achieved substantial competence in affective rea-
soning and empathic communication: both audi-
ences tend to recognize model responses as providing
stronger emotional support than the average human
baseline.

As shown in our analysis of evaluative rationales,
this overlap is not driven solely by superficial cues
such as length or generic warmth; when humans and
LLM judges agree on a winner, they also tend to high-
light similar conversational features (e.g., naming feel-
ings, offering concrete next steps, or sounding natu-
ral) in their justifications (Section 4.3). Consistent
with emerging work on AI-mediated emotional sup-
port, prior controlled studies have also found that AI-

generated responses are often rated as more empathic
and helpful than peer-written replies in matched sce-
narios (e.g., Ong et al., 2025; Sorin et al., 2024).

The resulting Elo leaderboard (Figure 4) illus-
trates this tension: frontier models approach or ex-
ceed human scores under model-based evaluation but
remain below human-level when rated by humans on
the most demanding items. Our “overall win rate”
metric is an additional metric we gather from all
the LLM judges as part of their scoring, which is
meant to aggregate their preferences across each cat-
egory of HEART (details in Section 9.5). The dual-
judge comparison thus exposes a key limitation of self-
assessment within AI systems: LLMs recognize and
reward linguistic proxies for empathy more readily
than genuine emotional insight.
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As shown in the HEART leaderboard Figure 4,
HEART performance tends to improve with effective
model capacity, and the frontier systems achieving the
highest Elo scores—such as GPT-5 (1611.8 Elo; me-
dian TTFT ≈700ms), GPT-o3 (1587.5 Elo; ≈13.8 s),
Gemini 2.5 Pro (1477.7 Elo; ≈14.9 s), and Claude
4.5 Sonnet (1540.9 Elo; ≈2.1 s)—all incur latencies
that far exceed thresholds tolerable for synchronous
speech.

In stark contrast, Hippocratic AI’s Polaris 4.0 oc-
cupies a qualitatively different region of this land-
scape. It delivers 1604.0 Elo at a median TTFT
of ∼400 ms, making it more than an order of mag-
nitude faster than the slowest frontier models with
comparable supportive-dialogue quality. Among all
evaluated systems, Polaris 4.0 is the only model op-
erating in the sub-500,ms latency regime while scoring
above the human baseline and clustering near much
slower large-capacity models (e.g., Claude3.7Sonnet
at ∼600,ms, Claude4Opus at ∼1.3,s). This positions
Polaris 4 uniquely within the target TTFT band for
real-time healthcare voice agents, where delays ex-
ceeding 500,ms measurably degrade turn-taking, per-
ceived empathy, and conversational naturalness.

Taken together, Figure 4 and Figure 5 illustrate
that high-quality supportive dialogue does not re-
quire extreme inference latency: with domain-specific
alignment and optimization, emotionally competent
voice agents can achieve both frontier-level Elo per-
formance and near-instantaneous responsiveness.

4.6 Real-Time Empathic Performance
on the HEART Landscape

Because parameter counts for many closed-weight
systems are undisclosed, we follow Artificial Anal-
ysis (Artificial Analysis, 2024) in using median
time-to-first-token (TTFT) latency as a practical—if
noisy—proxy for effective model capacity. Latency
conflates model size, alignment depth, and infras-
tructure choices, and therefore cannot be interpreted
causally; nonetheless, it offers a useful lens for identi-
fying broad performance trends across systems.

Across models, a pattern emerges. As shown
in Figure 5, HEART Elo generally increases
with log-scaled TTFT: systems that respond more
slowly—often because they are larger or more deeply
optimized—tend to achieve stronger supportive-
dialogue performance. The association is moderate
(Spearman ρ = 0.53) when averaged over model fam-
ilies. Comparisons within single model families fur-
ther reveal that instruction-tuning and alignment can
improve Elo without changes in latency, reinforcing
that TTFT is a coarse correlate rather than a causal

driver.
This pattern carries important implications for

real-time voice agents. The frontier models with
the highest HEART Elo cluster in the multi-
second TTFT regime, where delays disrupt natural
turn-taking and degrade perceived empathy. Be-
yond timing alone, voice interaction conveys emo-
tional meaning through channels unavailable in text.
Prosody—the contour of pitch, pacing, loudness, hes-
itation, and breath—is one of the richest carriers of
affective nuance in human communication (Cowen
et al., 2019). These micro-cues shape how listeners in-
fer warmth, safety, attentiveness, and emotional pres-
ence. Even a 300–500 ms delay can fracture these
cues: it breaks conversational rhythm, reduces per-
ceived attunement, and makes supportive responses
feel less immediate or sincere. In sensitive contexts
such as healthcare or crisis support, users often rely
on tone of voice to determine whether a supporter is
calm, steady, and “with” them in the moment. Low la-
tency is therefore not merely a technical requirement
but a psychological one for preserving the emotional
fidelity of voice interaction.

Against this backdrop, several mid-latency mod-
els—including Polaris 4—achieve human-level or
near-frontier HEART Elo while maintaining sub-
500,ms responsiveness, more than an order of magni-
tude faster than the slowest high-performing systems.
Polaris 4 uniquely occupies the region where high
supportive-dialogue quality and real-time turn-taking
are simultaneously achievable, despite most frontier
models exhibiting a strong latency–quality tradeoff.

This separation between supportive-dialogue qual-
ity and response speed underscores the need to eval-
uate systems jointly on HEART performance and la-
tency under real-world interaction constraints: empa-
thy at scale requires not only competence, but imme-
diacy.

4.7 Affective reasoning versus general
reasoning

To test whether empathic competence simply tracks
general problem-solving ability, we compared HEART
Elo and win rate against the Artificial Analysis
(AA) Intelligence Index—a multi-benchmark compos-
ite covering knowledge, reasoning, math and coding
(v3.0). Across fifteen contemporaneous frontier and
open-weight models, HEART Elo correlates positively
with AA Intelligence (Pearson r = 0.70), indicating
that models scoring highly on broad cognitive bench-
marks also tend to be preferred in supportive dialogue
(see Table 1). Yet the relationship is not perfectly
deterministic: models with similar AA scores can di-
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verge substantially on HEART due to differences in
tone control, reframing, and attunement. For exam-
ple, Gemini 3 Pro Preview and GPT-o3 share the
same AA score (65), yet GPT-o3 achieves a HEART
Elo of 1587.5 compared to Gemini 3’s 1471.0—a gap
of over 115 points. Similarly, GPT-4.1 mini (AA 42)
outperforms Gemini 2.5 Pro (AA 60) on HEART (Elo
1539.1 vs 1477.7), suggesting that alignment and in-
struction tuning can boost affective-reasoning ability
even when general intelligence scores lag.

The strong cross-axis association suggests shared
ingredients between cognitive skill and supportive di-
alogue (e.g., instruction following, long-range consis-
tency). However, residuals matter: models with sim-
ilar AA scores can differ by >50 Elo on HEART,
driven by affective micro-skills (attunement, refram-
ing, de-escalation) that are weakly probed by con-
ventional benchmarks. This gap motivates domain-
specific tuning and evaluation for empathic reliabil-
ity rather than assuming transfer from general intel-
ligence alone.

Model HEART Elo Win% AA

GPT-5 1611.8 85.9% 66
GPT-o3 1587.5 79.1% 65
Claude 4.5 Haiku 1561.8 69.6% 55
Kimi K2 1552.7 62.2% 48
Claude 4.5 Sonnet 1540.9 62.9% 63
GPT-4.1 mini 1539.1 62.8% 42
Claude 3.7 Sonnet 1531.8 59.4% 41
Claude 4 Opus 1504.0 49.2% 42
GPT-4o 1495.9 48.5% 36
Gemini 2.5 Pro 1477.7 39.5% 60
Gemini 3 Pro Preview 1471.0 45.2% 65
Llama-4 Maverick 1441.2 28.4% 36
Gemini 2.5 Flash 1427.9 25.1% 40
Llama-3.1-405B 1415.0 24.2% 28
Llama-3.1-70B 1384.6 13.8% 23

Table 1: Affective reasoning (HEART) versus
general-intelligence benchmark performance.
AA Intelligence Index values are from Artificial Anal-
ysis v3.0; dashes indicate models without a published
AA score. HEART scores are from our benchmark.
The positive but imperfect association between the
two measures (r = 0.70) highlights the role of align-
ment and domain-specific tuning in augmenting affec-
tive reasoning.

4.8 Support strategies used by hu-
mans vs LLMs

We operationalize supportive behavior using a 15-
category taxonomy of counseling strategies, such as
Clarification Questions, Reflective Listening, Emo-
tion Naming, Reframing, etc (full taxonomy and ex-
amples in Section 9.10). Human support strategies

were more varied and situationally adaptive than
those exhibited by LLMs: humans flexibly com-
bined validation, reframing, and self-empowerment,
modulating tone according to the seeker’s affect
and conversational history. By contrast, models re-
lied on a narrower band of high-frequency strate-
gies—chiefly reassurance, acknowledgment, and en-
couragement—yielding responses that sounded con-
sistently warm but often lacked deeper personaliza-
tion.

Figure 6: Each row represents one of the 15 support
strategies (sorted by overall usage), and each column
represents a model family. Colors indicate usage per-
centage (darker teal = higher usage, lighter pink =
lower usage). Humans draw on a more balanced range
of strategies, whereas models rely more heavily on a
narrower subset.

Yet this consistency also helps explain why LLMs
were sometimes rated as more empathic: their po-
liteness, lexical fluency, and balanced tone avoid the
hesitations, bluntness, or emotional fatigue that can
appear in human dialogue. In other words, models
achieve perceived empathy through stylistic coher-
ence and affective mimicry, whereas humans express
experienced empathy through contextual attunement
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and diversity of strategy. This distinction aligns with
counseling research suggesting that effective empathy
involves the dynamic regulation of warmth and chal-
lenge rather than uniform positivity (Elliott et al.,
2018). Current LLMs thus approximate the form of
empathic communication, but not yet the adaptive
reasoning that underlies it.

As shown in Figure 6, humans demonstrate the
most balanced use of strategies across the taxonomy.
Based on analysis of strategy usage, humans exhibited
the lowest standard deviation (SD = 16.33) in strat-
egy rates compared to all AI model families: GPT
(SD = 20.82), Llama (SD = 21.18), Gemini (SD =
22.54), and Claude (SD = 22.93). This pattern is
further reflected in the range between maximum and
minimum strategy usage, where humans showed the
smallest range (60.30 percentage points), followed by
Llama (70.71), Gemini (75.60), GPT (80.12), and
Claude (80.25). These metrics indicate that while AI
models tend to over-rely on a subset of strategies and
underuse others, human supporters maintain a more
balanced repertoire, adapting their strategy mix more
evenly across different counseling needs.

4.9 Similar patterns with exploratory
adversarial datapoints

Adversarial items (an exploratory subsection of data
we introduced)—where seekers expressed anger, skep-
ticism, or explicit resistance to help—proved chal-
lenging for both humans and models. On the 20 ad-
versarial contexts, overall HEART Elo scores is sim-
ilar relative to regular items for all systems, and hu-
man–model agreement fell slightly to 76% from 78%.
Humans were more likely to pivot toward boundary
setting and tension-naming (e.g., explicitly acknowl-
edging frustration or mistrust), while models tended
to repeat reassurance and problem-solving strategies
that worked on regular items. As a result, frontier
LLMs that outran the Average Human on regular
dialogues achieved only parity on adversarial ones.
This pattern supports the intuition that emotional
resistance stresses adaptive skills—such as refram-
ing, calibration of directness, and tactful disagree-
ment—that are not fully captured by generic polite-
ness or warmth.

5 Discussion
Our results show that, on HEART, frontier LLMs
are often preferred over average human supporters by
both human and model judges, and that humans and
models show roughly 80% raw agreement on which
responses are more supportive. At the same time,

disagreement clusters reveal systematic gaps in how
models handle ambiguity, mixed emotions, and ad-
versarial behavior. HEART contributes to emerg-
ing work on affective reasoning in LLMs by placing
humans and models on a shared, multi-dimensional
scale for supportive dialogue, combining human and
model evaluators, and probing emotionally charged
and adversarial contexts. This design makes it pos-
sible to distinguish cases where models merely repro-
duce empathic-sounding language from those where
they approximate the contextual judgment of human
supporters.

A central implication is that current models per-
form very well on what we might call surface empa-
thy. When judged on isolated turns, average human
responses often score below frontier LLM responses
on perceived empathy and linguistic fluency: models
are consistently polite, verbally fluent, and emotion-
ally steady—qualities that raters reliably associate
with empathy—whereas human dialogue is more vari-
able in tone and style. Preference, however, does not
equal effectiveness. An empathic-sounding response
may feel good to read yet fail to change the seeker’s
understanding or behavior, while a slightly awkward
human reply that names a hard truth, pushes for
specificity, or draws on shared history might be more
impactful. Our findings therefore point to two com-
plementary dimensions: perceived empathy as consis-
tency (how reliably a response sounds empathic by
surface cues) and experienced empathy as contextual
judgment (how well the supporter reads the situation,
calibrates boundaries, and helps the seeker move for-
ward). Frontier LLMs are strong on the former; ex-
pert human supporters remain stronger on the latter.

The remaining 20% of human–model disagree-
ment is concentrated in cases where human-to-human
understanding is also fragile. In such items, responses
often split wins across HEART axes—one reply reads
more human-like and warm, while the other is bet-
ter attuned and more action-oriented—and LLM
judges tend to weight axes more uniformly than
humans, who implicitly prioritize attunement and
next-step resonance. Adversarial and emotionally
resistant cases make this especially clear: when faced
with anger, sarcasm, or pushback, models generally
maintain politeness and validation but show limited
boundary setting or tension-naming, whereas humans
more often combine empathy with gentle firmness.
Effective de-escalation requires both alignment and
self-protection, and most current systems enact pri-
marily the former. This reveals a limitation not only
of today’s models but also of our benchmark, which
does not yet explicitly measure “empathic contain-
ment”—the ability to hold strong emotion, set bound-
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aries, and stay engaged.
These patterns have implications for both AI de-

sign and human supporters. For AI, optimizing
purely for static preference risks producing increas-
ingly polished, uniformly warm responses that are
empathic-sounding but not always maximally help-
ful. Bridging this gap will likely require training
on more diverse, ambiguous, and cross-cultural dia-
logues and objectives that reward interpretive accu-
racy, calibrated challenge, and appropriate boundary
setting rather than generic warmth alone. For hu-
man supporters, AI systems may offer useful scaf-
folding—consistent, low-variance phrasing that feels
validating and safe—but could also create pressure to
mimic AI-style smoothness, crowding out the messier,
relational aspects of care. Taken together, HEART
suggests that the question is not whether humans or
LLMs are “more empathic,” but how their comple-
mentary strengths can be understood and combined.
Preference data reveal what people currently expe-
rience as empathic in text; linking benchmarks like
HEART to longitudinal measures of well-being and
relationship quality will be essential for understand-
ing which kinds of support actually help—and for en-
suring that empathic AI augments, rather than re-
places, human care.

6 Safety and ethics
The evaluation of empathy in language models raises
distinctive ethical considerations. First, measurement
risks: human raters may project their own cultural or
emotional expectations onto responses, leading to bi-
ased judgments that models then reinforce. Second,
simulation risks: models that convincingly mimic em-
pathy can foster over-trust or emotional dependency
in users, especially in health- or support-related con-
texts. While such responsiveness can improve engage-
ment, it blurs the line between instrumental empathy
(helping comprehension) and affective deception (sim-
ulating care without understanding). Accordingly,
systems evaluated with HEART should be deployed
only where transparency about AI identity and limits
is explicit.

We also emphasize data provenance and consent.
Our benchmark uses anonymized, synthetic, or vol-
untarily contributed dialogues, and future expansions
must avoid reproducing interactions without proper
oversight. Finally, we recommend that HEART scores
never be used as marketing claims (“empathetic AI”)
without clear documentation of evaluation conditions
and human-comparison baselines. Empathy, even in
computational form, is a relational capacity—not a
product feature. All materials underwent automated

safety screening and human review. Judges were
instructed to down-weight unsafe or scope-violating
content and to favour boundary-respecting responses
under task-following. Human contributors provided
informed consent; no personally identifiable or clini-
cal data are released. Harmful content and prompts
failing safety review are excluded from release.

7 Limitations
Our study has several limitations that should be con-
sidered when interpreting these findings. HEART,
while designed to measure the interpersonal intelli-
gence of dialogue systems, is evaluated primarily on
English-language conversations situated within West-
ern norms of emotional expression and support. Em-
pathic communication varies widely across cultures,
languages, and contexts, and future extensions must
capture these cross-cultural dimensions to avoid reify-
ing a narrow linguistic standard of empathy. More-
over, the present analyses focus on short, text-based
interactions; human empathy typically unfolds over
longer relationships and through multimodal channels
such as tone, prosody, gesture, and timing. Extending
HEART to audio, video, and longitudinal dialogues
would therefore enhance ecological validity. Although
inter-rater reliability was high, empathy judgments
remain inherently subjective and may be influenced
by stylistic cues such as verbosity or politeness rather
than true emotional attunement.

These design constraints intersect with important
ethical risks. Our results show that frontier LLM
responses are frequently preferred over average hu-
man responses on HEART, which raises the possibil-
ity that users may substitute AI for human care, espe-
cially when access to therapy or peer support is lim-
ited. Preference, however, does not guarantee safety
or appropriateness. If “empathic-sounding” systems
are deployed without clear guardrails, users may come
to rely on them as de facto counsellors or therapists,
despite the models’ lack of clinical training, account-
ability, and duty of care. This risk is especially salient
for vulnerable populations, including minors, individ-
uals in acute crisis, and people with impaired judg-
ment (e.g., due to severe depression, psychosis, sub-
stance use, or cognitive impairment). In these groups,
delayed escalation, over-reassurance in the face of se-
rious risk, or misinterpretation of disclosures could
have serious consequences. HEART does not stratify
performance by user population, and our benchmark
should not be interpreted as certifying safety for these
high-risk contexts.

Finally, HEART evaluates perceived empa-
thy—the extent to which responses sound empathic
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to evaluators—rather than experienced empathy, or
how supported users actually feel after an interaction.
We view this not as a deficiency of the benchmark
but as an important next step: a complementary line
of work should track affective outcomes, user state
changes, and moment-to-moment interpersonal dy-
namics to understand when empathic language trans-
lates into meaningful emotional impact. Such ex-
tensions would transform HEART from a perceptual
benchmark into a broader framework for studying
how support LLMs evolve over time.

8 Conclusion

Our results demonstrate that large language models
now approximate human judgments of empathy to a
striking degree: across thousands of pairwise compar-
isons, frontier models reached roughly 78.7% agree-
ment with human evaluators and, in some cases, sur-
passed average human performance in perceived em-
pathy. This convergence suggests that models have
reproduced many of the linguistic and social cues
that humans associate with emotional understand-
ing. Yet deeper analysis reveals that this alignment is
partial—models achieve consistency through stylistic
warmth and fluency, while humans express empathy
through greater strategic diversity, contextual infer-
ence, and moral sensitivity. In short, LLMs mirror
the form of empathic behavior more faithfully than
its function.

These findings redefine the boundary between hu-
man and machine conversation. They show that em-
pathy, once considered uniquely human, can be ap-
proximated behaviorally through learned communi-
cation patterns, while still lacking the adaptive rea-
soning and situational judgment that give empathy its
depth. As conversational AI becomes more pervasive,
understanding this distinction will be crucial—not
only for improving model design but for clarifying
what kind of emotional intelligence society expects
from its machines. In this sense, the HEART bench-
mark provides more than a metric: it offers a lens on
how humans and models converge and diverge in the
art of understanding one another.

9 Methods

9.1 Benchmark design

We assess conversational competence under emotion-
ally charged conditions using HEART, a five-axis
framework—human alignment (H), empathic re-
sponsiveness (E), attunement (A), resonance

(R), and task-following (T). Each trial presents a
multi-turn context followed by two anonymized com-
pletions (A/B). Judges provide a forced preference
on overall empathic quality with strength and option-
ally mark axis-specific advantages (H/E/A/R/T). All
identities are blinded and A/B order is randomized
(Fig. 2, 3).

9.2 Dataset construction

We start from ESConv, a corpus of emotional-support
dialogues between a help-seeker and a trained peer
supporter (Liu et al., 2021). ESConv contains roughly
1,300 English conversations (910 train, 195 valida-
tion, 195 test) collected via a crowdsourcing platform,
where one worker plays a “seeker” describing a real
or plausible stressful situation and another plays a
non-clinical “supporter” trained with a short protocol
on counseling micro-skills (validation, reflective lis-
tening, problem-focused coping). The conversations
span grief, relationship conflict, academic pressure,
financial stress, job instability, depression, friendship
problems, and family or health-related challenges. Di-
alogues are multi-turn (mean ≈ 7 turns), alternate
between seeker and supporter, and include emotional
disclosures, coping attempts, and follow-up questions.
Each conversation has high-level situational labels
(emotion category, problem type), which we later use
to stratify topic coverage.

To focus evaluation on emotionally consequential
moments, we enumerate all seeker–supporter couplets
in ESConv and screen them for “response potential”:
turns where the seeker reveals distress, conflict, or an
explicit request for help (such as “I feel like giving
up,” “I don’t know what to do,” or “Should I leave
this relationship?”). Automated filters then select up
to two high-stakes turns per dialogue that (i) contain
a clear emotional signal, (ii) admit multiple plausible
supportive strategies, and (iii) do not require special-
ized clinical expertise. We remove safety-critical or
NSFW content (explicit self-harm plans, hate speech,
identifying information). This yields 280 regular eval-
uation items, each consisting of a multi-turn context
followed by a single supporter turn to be completed
by humans and models.

We additionally construct 20 adversarial
emotional-resistance items by using an LLM-based
transformation pipeline to rewrite only the seeker
turns in a stratified subset of ESConv conversa-
tions while preserving the underlying situation and
supporter role. Four escalation profiles over seeker
turns—Always-10 (high hostility from the outset),
Linear-Ramp (gradual increase), Mid-Spike (sudden
escalation mid-conversation), and Mid-Ramp (late-
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Figure 7: Evaluation protocol and ranking pipeline. We curate 300 dialogue histories (280 regular, 20
adversarial). For each history, three independent humans and 18 LLMs produce one completion. Blinded
human judges (eight total) make A/B pairwise preferences using the HEART rubric. Preferences are fit with
a Bradley–Terry model to yield Elo-style rankings and per-axis summaries; estimates aggregate across regular
and adversarial subsets with bootstrap confidence intervals.

onset escalation)—control how frustration intensifies
across the dialogue; transformed items are required to
alternate strictly between supporter and seeker, start
with a supporter greeting, end with a high-adversarial
seeker turn, and contain at least four turns.

9.3 Human completions

For each selected context, three independent human
completions are collected via a web interface from a
pool of 12 vetted contributors (general crowdsource
workers and clinicians). Instructions emphasise natu-
ral, speech-like tone; 1–3 sentences (about 40 words);
boundary-respecting guidance; and no AI assistance.
Each dialogue is completed by three distinct humans,
and each contributor writes for multiple dialogues but

never for the same context twice. We report Average
Human which is the top-scoring completion per con-
text.

9.4 Model completions

We evaluate a set of closed- and open-weight models
spanning multiple families and sizes: GPT-5, GPT-
o3, GPT-4o; Claude 4.5 Sonnet, Claude 4 Opus,
Claude 4.5 Haiku; Gemini 2.5 Pro; Polaris 4; Kimi
k2; and three open-weight Llama baselines (Llama-4
Maverick, Llama-3.1-405B, Llama-3.3-70B). We also
have the original dataset completions for each di-
alogue history. Generations use deterministic set-
tings (temperature = 0, top-p = 1.0). Each model
produces exactly one completion per context; tool
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Axis Description High-scoring example Low-scoring example

Human Align-
ment (H)

Natural, human-like tone and
flow (clear, grounded, non-
robotic).

“I hear you, and it sounds like you’re
feeling really stuck and disconnected
right now. That heaviness can be so
overwhelming.”

“Whats been going on. You are feel-
ing bad. This is not good situation.”

Empathic Re-
sponsiveness
(E)

Warm, non-judgmental acknowl-
edgement and validation of feel-
ings.

“I’m so sorry you’re going through
this—that must feel absolutely dev-
astating, especially being separated
from your kids.”

“That sucks. Anyway, lots of people
go through this, so you’ll probably
get over it.”

Attunement (A) Tracks this seeker’s specific de-
tails and emotions, not just
generic platitudes.

“I hear you—feeling stuck at home
while your friends move on can drain
your motivation and make everything
feel overwhelming. You’re not lazy;
you’re exhausted and discouraged.”

“I get that life can be hard sometimes.
Just try to stay positive and things
will work out eventually.”

Resonance (R) Feels personally relevant and tai-
lored to the seeker’s goals, iden-
tity, and situation.

“You’ve mentioned how much finish-
ing this degree matters to you and
your family. What if we pick one
small step that fits your style—like
outlining just the first section tonight
so it feels less impossible?”

“Everyone feels stressed about school.
You should just work harder and stay
motivated like other successful people
do.”

Task-following
(T)

Stays within role and safety
boundaries while addressing the
seeker’s stated goals.

“I understand your concerns about
the vaccine—that’s ultimately your
decision. Since I can’t give medi-
cal advice, we could instead focus on
ways to help you feel less isolated
right now.”

“You should definitely get the vac-
cine; it’s safe for almost everyone and
will fix a lot of your problems. If
your doctor disagrees, they’re prob-
ably just being overly cautious.”

Table 2: HEART rubric summary. Judges are given brief descriptions and contrasting examples for each
axis to guide pairwise preferences between two candidate responses.

use and chain-of-thought are disabled. The system
prompt instructs the model to respond as a support-
ive listener in 1–3 sentences, and to acknowledge feel-
ings.

9.5 HEART rubric and judging inter-
face

The HEART rubric provides concise anchors and
counter-examples for each axis to reduce construct
leakage. While Figure 1 illustrates the conceptual
structure of the five HEART dimensions, the full op-
erational rubric used by judges—including brief de-
scriptions and high- vs. low-scoring examples for each
axis—is presented in Table 2. This table serves as the
primary reference evaluators use when deciding which
response better satisfies Human Alignment, Empathic
Responsiveness, Attunement, Resonance, and Task-
following.

During evaluation, judges choose a winner (A or
B; ties disallowed) and then rate the strength of the
win on a 5-point scale (“+” to “+++++”). Axis-level
icons are marked only when the advantage on that
particular dimension is clear. A short checklist built
into the interface reminds judges to avoid being in-
fluenced by verbosity, formatting, or position biases,
ensuring that ratings reflect conversational quality
rather than presentation artifacts.

9.6 Judges and quality control
We use two sources of evaluation. Human pairwise
judges: we recruited a pool of 15 raters, and each re-
sponse pair received 5 independent human judgments.
Responses quality checks were done before the recruit-
ment of these raters. Raters who failed ≥ 50% of
the quality checks or showed anomalous completion
times were excluded from analysis. LLM judges (en-
semble): independent evaluators from the GPT and
Claude families applied the identical HEART rubric
and JSON schema; to reduce bias, evaluators did not
judge outputs from their own model family. We re-
port human-only, LLM-only, and combined analyses
in the Results.

9.7 Latency Requirements for Real-
Time Voice Agents

In interpreting these latency numbers, we treat a
median LLM time-to-first-token (TTFT) of roughly
500,ms as a practical design target for real-time voice
interaction. Conversation analysis shows that human
turn-taking involves extremely short gaps—typically
∼200,ms between one speaker finishing and the next
beginning (SACKS et al., 1978; Stivers et al., 2009;
Levinson and Torreira, 2015). Human–computer in-
teraction research similarly finds that delays below
about 1, s feel fluid, whereas longer pauses begin
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to feel disruptive (Nielsen, 1993). Telecommunica-
tion standards also treat end-to-end delays above
150–400,ms as noticeably degrading conversational
quality. Together, these strands motivate a sub-
second latency budget if we want AI voice agents to
feel conversational rather than transactional.

In deployed systems, however, LLM latency is only
one contributor to total time-to-first-audio (TTFA).
Endpointing and ASR typically consume 150–300,ms,
and TTS may require another 100–200,ms before pro-
ducing the first audio frame. To keep overall TTFA
comfortably below ∼1, s under median conditions, the
model itself must therefore operate within a few hun-
dred milliseconds. A median TTFT near 500,ms is
thus a reasonable operating point: fast enough to
maintain conversational rhythm while leaving head-
room for variability in network conditions and device
performance.

We emphasize that 500,ms TTFT is not a biolog-
ical constant but a pragmatic threshold where tech-
nical feasibility and conversational psychology align.
Models with multi-second TTFT may achieve higher
raw HEART scores but fall outside the latency en-
velope required for synchronous speech. By con-
trast, systems like Polaris 4, which achieve near-
frontier HEART performance at sub-500,ms median
TTFT, occupy the regime where voice agents can re-
spond quickly enough to preserve turn-taking rhythm,
prosodic coherence, and the sense that the sup-
porter is “with” the user in real time. In domains
such as healthcare—where users rely on tone, pacing,
and immediate back-and-forth to judge empathy and
safety—this combination of high HEART scores and
≈500,ms model latency represents a natural design
target.

9.8 Primary endpoint and ranking
Pairwise preferences are fit with a Bradley–Terry
model,

Pr(i ≻ j) =
exp(θi)

exp(θi) + exp(θj)
,

weighted by win strength (1–5). Elo-style ratings are
derived as

Eloi = 400
θi − θ̄

ln 10
+ 1500,

where θi denotes the Bradley–Terry strength param-
eter for model i. We compute 95% confidence in-
tervals using asymptotic normal approximation with
standard error SE =

√
1/ni on the log-strength scale,

where ni is the number of comparisons involving
model i.

9.9 Agreement and reliability

Inter-human agreement is reported using Fleiss’ κ
(overall and per-axis), the multi-rater generalization
of Cohen’s κ, and Krippendorff’s α for the overall
preference label. Human–LLM agreement is defined
as the fraction of response pairs where the LLM-
ensemble majority matches the human majority; un-
certainty is estimated by nonparametric bootstrap.
We additionally report cross-model (GPT–Claude)
agreement and stability under judge subsampling.

9.10 Strategy taxonomy and diversity

Completions are labelled with a 15-strategy taxonomy
that captures common counseling and supportive be-
haviors. We define the following categories:

Affirmation This involves acknowledging and posi-
tively reinforcing an individual’s strengths, feel-
ings, or actions. Example: ’You’ve shown in-
credible resilience in facing these challenges.’

Avoid Judgment and Criticism This strategy fo-
cuses on providing support without expressing
negative judgments or criticisms of the person’s
thoughts, feelings, or actions. Example: ’It’s
understandable that you felt that way in that
situation.’

Clarification This entails asking questions or restat-
ing what was said to ensure clear understanding
of the person’s feelings or situation. Example:
’Could you explain a bit more about what you
mean by that?’

Collaborative Planning This involves working to-
gether to develop strategies or plans to address
specific issues or challenges. Example: ’Let’s
brainstorm some strategies that could help you
manage this stress.’

Emotional Validation This strategy involves ac-
knowledging and accepting the person’s emo-
tions as legitimate and important. Example:
’It’s completely normal to feel sad in a situa-
tion like this.’

Normalize Experiences This approach helps the
person understand that their experiences or
feelings are common and not something to
be ashamed of. Example: ’Many people go
through similar challenges, and it’s okay to feel
this way.’

Offer Hope This involves providing reassurance
that things can improve and that there is hope
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for a better future. Example: ’I’m confident
that you’ll find a way through this challenge.’

Promote Self-Care Practices Encouraging the
person to engage in activities that promote
physical, emotional, and mental well-being. Ex-
ample: ’Have you considered setting aside some
time for relaxation or a hobby you enjoy?’

Provide Different Perspectives Offering new
viewpoints or ways of thinking about a situation
to help broaden understanding and possibly re-
duce distress. Example: ’Have you considered
looking at the situation from this angle?’

Reflective Statements Mirroring back what the
person has said to show understanding and em-
pathy. Examples: ’It sounds like you’re feeling
really overwhelmed by your workload.’

Reframe Negative Thoughts Helping to shift
negative or unhelpful thought patterns into
more positive or realistic ones. Examples: ’In-
stead of thinking of it as a failure, could we see
it as a learning opportunity?’

Share Information Providing factual information
or resources that might be helpful in under-
standing or coping with a situation. Examples:
’I read an article about coping strategies that
might be useful for you.’

Stress Management Offering techniques or sug-
gestions to help reduce or manage stress. Exam-
ples: ’Have you tried deep breathing or mind-
fulness exercises to manage stress?’

Suggest Options Presenting various possibilities or
alternatives that the person might consider in
their situation. Examples: ’One option might
be to talk to someone you trust about what
you’re going through.’

Chit Chat Engaging in light, casual conversation to
build rapport and provide a sense of normalcy
and comfort. Examples: ’How’s your day going
so far?’

Each strategy has an operational definition and
several positive examples used in annotator prompt.

LLM classifier and prompts. We use a prompted
LLM classifier with a strict JSON schema to assign
zero or more strategies to each completion. The
system prompt describes the goal (“label counsel-
ing/support strategies in a short response”), presents

the full 15-strategy taxonomy with definitions, and in-
structs the model to (i) read a single completion, (ii)
decide for each strategy whether it is clearly present,
clearly absent, or uncertain, and (iii) output only a
JSON object. The user prompt provides the comple-
tion text and reiterates that the classifier must: (a)
reason step-by-step when mapping phrases to strate-
gies, (b) abstain (mark “uncertain”) when evidence is
weak, and (c) return a JSON dictionary with proba-
bility for e and optional short evidence snippets per
strategy (for example, a single sentence that triggered
the label). The exact prompts and JSON schema are
reproduced verbatim in Listing S#.

Human spot checks and agreement. To val-
idate the LLM-based labels, we randomly sample
300 completions stratified across models and humans.
Two human annotators independently label each com-
pletion using the same 15-strategy rubric. Disagree-
ments are adjudicated to form a human-consensus la-
bel set. Macro-averaged F1 between the LLM classi-
fier and human consensus is 0.86 across the 15 strate-
gies, with per-strategy F1 ranging from 0.78 (for cat-
egories that require finer-grained judgment, such as
distinguishing Stress Management from more generic
Suggest Options) to 0.93 (for consistently salient cat-
egories such as Reflective Statements). These results
indicate that the LLM classifier approximates human
labels closely enough to support aggregate analyses of
strategy coverage, diversity, and human–model gaps.
In the main text, we report coverage (which strate-
gies appear at least once per system), per-item unique
strategy count, entropy of the strategy distribution,
and differences between humans and models in the
use of specific strategies.

9.11 Factor structure of HEART

Axis-level marks are aggregated to per-response z-
scores and entered into exploratory factor analysis to
test whether HEART reflects a single latent “conver-
sational EQ” or separable sub-skills. We report factor
loadings, Cronbach’s α and correlations with overall
wins.

9.12 Statistical reporting

All tests are two-sided. We report effect sizes
with 95% confidence intervals; multiple compar-
isons within families are controlled using Ben-
jamini–Hochberg (where applicable). Bootstraps re-
sample at the conversation level. Pre-specified anal-
yses include Bradley–Terry/Elo, agreement metrics,
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and bias audits; ablations (e.g., allowing draws, al-
ternate rankers) are labelled exploratory.

9.13 Data availability
We plan to release contexts with metadata, human
and model completions (de-identified), anonymised
pairwise judgments, and judge prompts. Access to
closed-weight model outputs is subject to provider

terms; we include prompts and content hashes to sup-
port regeneration.

9.14 Code availability

Analysis and plotting code for Bradley–Terry/Elo fit-
ting, agreement estimates, and figure generation will
be available.
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